Daniel Whitenack Avatar

Daniel Whitenack

Practical AI Practical AI #94

Operationalizing ML/AI with MemSQL

A lot of effort is put into the training of AI models, but, for those of us that actually want to run AI models in production, performance and scaling quickly become blockers. Nikita from MemSQL joins us to talk about how people are integrating ML/AI inference at scale into existing SQL-based workflows. He also touches on how model features and raw files can be managed and integrated with distributed databases.

Practical AI Practical AI #93

Roles to play in the AI dev workflow

This full connected has it all: news, updates on AI/ML tooling, discussions about AI workflow, and learning resources. Chris and Daniel breakdown the various roles to be played in AI development including scoping out a solution, finding AI value, experimentation, and more technical engineering tasks. They also point out some good resources for exploring bias in your data/model and monitoring for fairness.

Practical AI Practical AI #92

The long road to AGI

Daniel and Chris go beyond the current state of the art in deep learning to explore the next evolutions in artificial intelligence. From Yoshua Bengio’s NeurIPS keynote, which urges us forward towards System 2 deep learning, to DARPA’s vision of a 3rd Wave of AI, Chris and Daniel investigate the incremental steps between today’s AI and possible future manifestations of artificial general intelligence (AGI).

Practical AI Practical AI #90

Exploring NVIDIA's Ampere & the A100 GPU

On the heels of NVIDIA’s latest announcements, Daniel and Chris explore how the new NVIDIA Ampere architecture evolves the high-performance computing (HPC) landscape for artificial intelligence. After investigating the new specifications of the NVIDIA A100 Tensor Core GPU, Chris and Daniel turn their attention to the data center with the NVIDIA DGX A100, and then finish their journey at “the edge” with the NVIDIA EGX A100 and the NVIDIA Jetson Xavier NX.

Practical AI Practical AI #89

AI for Good: clean water access in Africa

Chandler McCann tells Daniel and Chris about how DataRobot engaged in a project to develop sustainable water solutions with the Global Water Challenge (GWC). They analyzed over 500,000 data points to predict future water point breaks. This enabled African governments to make data-driven decisions related to budgeting, preventative maintenance, and policy in order to promote and protect people’s access to safe water for drinking and washing. From this effort sprang DataRobot’s larger AI for Good initiative.

Practical AI Practical AI #87

Reinforcement learning for chip design

Daniel and Chris have a fascinating discussion with Anna Goldie and Azalia Mirhoseini from Google Brain about the use of reinforcement learning for chip floor planning - or placement - in which many new designs are generated, and then evaluated, to find an optimal component layout. Anna and Azalia also describe the use of graph convolutional neural networks in their approach.

Practical AI Practical AI #86

Exploring the COVID-19 Open Research Dataset

In the midst of the COVID-19 pandemic, Daniel and Chris have a timely conversation with Lucy Lu Wang of the Allen Institute for Artificial Intelligence about COVID-19 Open Research Dataset (CORD-19). She relates how CORD-19 was created and organized, and how researchers around the world are currently using the data to answer important COVID-19 questions that will help the world through this ongoing crisis.

Practical AI Practical AI #84

COVID-19 Q&A and CORD-19

So many AI developers are coming up with creative, useful COVID-19 applications during this time of crisis. Among those are Timo from Deepset-AI and Tony from Intel. They are working on a question answering system for pandemic-related questions called COVID-QA. In this episode, they describe the system, related annotation of the CORD-19 data set, and ways that you can contribute!

Practical AI Practical AI #83

Mapping the intersection of AI and GIS

Daniel Wilson and Rob Fletcher of ESRI hang with Chris and Daniel to chat about how AI powered modern geographic information systems (GIS) and location intelligence. They illuminate the various models used for GIS, spatial analysis, remote sensing, real-time visualization, and 3D analytics. You don’t want to miss the part about their work for the DoD’s Joint AI Center in humanitarian assistance / disaster relief.

Practical AI Practical AI

Welcome to Practical AI

Practical AI is a weekly podcast that’s marking artificial intelligence practical, productive, and accessible to everyone. If world of AI affects your daily life, this show is for you.

From the practitioner wanting to keep up with the latest tools & trends…

(clip from episode #68)

To the AI curious trying to understand the concepts at play and their implications on our lives…

(clip from episode #39)

Expert hosts Chris Benson and Daniel Whitenack are here to keep you fully-connected with the world of machine learning and data science.

Please listen to a recent episode that interests you and subscribe today. We’d love to have you as a listener!

Daniel Whitenack datadan.io

Using AI to translate "wash your hands" into 500+ languages

I used multilingual unsupervised methods (MUSE) to train cross-lingual word embeddings for over 500 languages. I then used these embeddings to extract components of the phrase “wash your hands” from existing target language documents. This resulted in translations of “wash your hands” in 510 languages not currently supported in any public translation platform.

Practical AI Practical AI #82

Speech recognition to say it just right

Catherine Breslin of Cobalt joins Daniel and Chris to do a deep dive on speech recognition. She also discusses how the technology is integrated into virtual assistants (like Alexa) and is used in other non-assistant contexts (like transcription and captioning). Along the way, she teaches us how to assemble a lexicon, acoustic model, and language model to bring speech recognition to life.

Practical AI Practical AI #81

Building a career in Data Science

Emily Robinson, co-author of the book Build a Career in Data Science, gives us the inside scoop about optimizing the data science job search. From creating one’s resume, cover letter, and portfolio to knowing how to recognize the right job at a fair compensation rate.

Emily’s expert guidance takes us from the beginning of the process to conclusion, including being successful during your early days in that fantastic new data science position.

Practical AI Practical AI #78

NLP for the world's 7000+ languages

Expanding AI technology to the local languages of emerging markets presents huge challenges. Good data is scarce or non-existent. Users often have bandwidth or connectivity issues. Existing platforms target only a small number of high-resource languages.

Our own Daniel Whitenack (data scientist at SIL International) and Dan Jeffries (from Pachyderm) discuss how these and related problems will only be solved when AI technology and resources from industry are combined with linguistic expertise from those on the ground working with local language communities. They have illustrated this approach as they work on pushing voice technology into emerging markets.

0:00 / 0:00