AI (Artificial Intelligence) Icon

AI (Artificial Intelligence)

Machines simulating human characteristics and intelligence.
391 episodes
All Topics

Changelog Interviews Changelog Interviews #567

Bringing Dev Mode to Figma

This week on we’re joined by Emil Sjölander from Figma — talking about bringing Dev Mode to Figma. Dev Mode is their new workspace in Figma that’s designed to bring developers and design to the same tool.

The question they’re trying to answer is “How do you create a home for developers in a design tool?” We go way back to Emil’s startup that was acquired by Figma called Visly, how we iterated to here from 20 years ago (think PSD > HTML days), what they did to build Dev Mode, what they’re doing around codegen, the popularity of design systems, and what it takes to go from zero to Dev Mode.

Practical AI Practical AI #245

AI trailblazers putting people first

According to Solana Larsen: “Too often, it feels like we have lost control of the internet to the interests of Big Tech, Big Data — and now Big AI.” In the latest season of Mozilla’s IRL podcast (edited by Solana), a number of stories are featured to highlight the trailblazers who are reclaiming power over AI to put people first. We discuss some of those stories along with the issues that they surface.

Practical AI Practical AI #244

Government regulation of AI has arrived

On Monday, October 30, 2023, the U.S. White House issued its Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Two days later, a policy paper was issued by the U.K. government entitled The Bletchley Declaration by Countries Attending the AI Safety Summit, 1-2 November 2023. It was signed by 29 countries, including the United States and China, the global leaders in AI research.

In this Fully Connected episode, Daniel and Chris parse the details and highlight key takeaways from these documents, especially the extensive and detailed executive order, which has the force of law in the United States.

Practical AI Practical AI #243

Self-hosting & scaling models

We’re excited to have Tuhin join us on the show once again to talk about self-hosting open access models. Tuhin’s company Baseten specializes in model deployment and monitoring at any scale, and it was a privilege to talk with him about the trends he is seeing in both tooling and usage of open access models. We were able to touch on the common use cases for integrating self-hosted models and how the boom in generative AI has influenced that ecosystem.

Practical AI Practical AI #242

Deep learning in Rust with Burn 🔥

It seems like everyone is interested in Rust these days. Even the most popular Python linter, Ruff, isn’t written in Python! It’s written in Rust. But what is the state of training or inferencing deep learning models in Rust? In this episode, we are joined by Nathaniel Simard, the creator burn. We discuss Rust in general, the need to have support for AI in multiple languages, and the current state of doing “AI things” in Rust.

Practical AI Practical AI #240

Generative models: exploration to deployment

What is the model lifecycle like for experimenting with and then deploying generative AI models? Although there are some similarities, this lifecycle differs somewhat from previous data science practices in that models are typically not trained from scratch (or even fine-tuned). Chris and Daniel give a high level overview in this effort and discuss model optimization and serving.

Practical AI Practical AI #237

Automating code optimization with LLMs

You might have heard a lot about code generation tools using AI, but could LLMs and generative AI make our existing code better? In this episode, we sit down with Mike from TurinTech to hear about practical code optimizations using AI “translation” of slow to fast code. We learn about their process for accomplishing this task along with impressive results when automated code optimization is run on existing open source projects.

Practical AI Practical AI #235

Blueprint for an AI Bill of Rights

In this Fully Connected episode, Daniel and Chris kick it off by noting that Stability AI released their SDXL 1.0 LLM! They discuss its virtues, and then dive into a discussion regarding how the United States, European Union, and other entities are approaching governance of AI through new laws and legal frameworks. In particular, they review the White House’s approach, noting the potential for unexpected consequences.

Practical AI Practical AI #234

Vector databases (beyond the hype)

There’s so much talk (and hype) these days about vector databases. We thought it would be timely and practical to have someone on the show that has been hands on with the various options and actually tried to build applications leveraging vector search. Prashanth Rao is a real practitioner that has spent and huge amount of time exploring the expanding set of vector database offerings. After introducing vector database and giving us a mental model of how they fit in with other datastores, Prashanth digs into the trade offs as related to indices, hosting options, embedding vs. query optimization, and more.

Practical AI Practical AI #233

There's a new Llama in town

It was an amazing week in AI news. Among other things, there is a new NeRF and a new Llama in town!!! Zip-NeRF can create some amazing 3D scenes based on 2D images, and Llama 2 from Meta promises to change the LLM landscape. Chris and Daniel dive into these and they compare some of the recently released OpenAI functionality to Anthropic’s Claude 2.

Changelog Interviews Changelog Interviews #549

Storytime with Steve Yegge

This week it’s storytime with Steve Yegge! Steve came out of retirement to join Sourcegraph as Head of Engineering. Their next frontier is Cody, their AI coding assistant that answers code questions and writes code for you by reading your entire codebase and the code graph. But, we really spent a lot of time talking with Steve about his time at Amazon, Google, and Grab. Ok, it’s storytime!

Practical AI Practical AI #232

Legal consequences of generated content

As a technologist, coder, and lawyer, few people are better equipped to discuss the legal and practical consequences of generative AI than Damien Riehl. He demonstrated this a couple years ago by generating, writing to disk, and then releasing every possible musical melody. Damien joins us to answer our many questions about generated content, copyright, dataset licensing/usage, and the future of knowledge work.

Practical AI Practical AI #231

A developer's toolkit for SOTA AI

Chris sat down with Varun Mohan and Anshul Ramachandran, CEO / Cofounder and Lead of Enterprise and Partnership at Codeium, respectively. They discussed how to streamline and enable modern development in generative AI and large language models (LLMs). Their new tool, Codeium, was born out of the insights they gleaned from their work in GPU software and solutions development, particularly with respect to generative AI, large language models, and supporting infrastructure. Codeium is a free AI-powered toolkit for developers, with in-house models and infrastructure - not another API wrapper.

Practical AI Practical AI #230

Cambrian explosion of generative models

In this Fully Connected episode, Daniel and Chris explore recent highlights from the current model proliferation wave sweeping the world - including Stable Diffusion XL, OpenChat, Zeroscope XL, and Salesforce XGen. They note the rapid rise of open models, and speculate that just as in open source software, open models will dominate the future. Such rapid advancement creates its own problems though, so they finish by itemizing concerns such as cybersecurity, workflow productivity, and impact on human culture.

Practical AI Practical AI #229

Automated cartography using AI

Your feed might be dominated by LLMs these days, but there are some amazing things happening in computer vision that you shouldn’t ignore! In this episode, we bring you one of those amazing stories from Gabriel Ortiz, who is working with the government of Cantabria in Spain to automate cartography and apply AI to geospatial analysis. We hear about how AI tooling fits into the GIS workflow, and Gabriel shares some of his recent work (including work that can identify individual people, invasive plant species, building and more from aerial survey data).

Practical AI Practical AI #228

From ML to AI to Generative AI

Chris and Daniel take a step back to look at how generative AI fits into the wider landscape of ML/AI and data science. They talk through the differences in how one approaches “traditional” supervised learning and how practitioners are approaching generative AI based solutions (such as those using Midjourney or GPT family models). Finally, they talk through the risk and compliance implications of generative AI, which was in the news this week in the EU.

Practical AI Practical AI #226

Accidentally building SOTA AI

Lately.AI has been working for years on content generation systems that capture your unique “voice” and are tailored to your unique audience. At first, they didn’t know that they were going to build an AI system, but now they have a state-of-the-art generative platform that provides much more than “prompting” out of thin air. Lately.AI’s CEO Kate explain their journey, her perspective on generative AI in marketing, and much more in this episode!

Player art
  0:00 / 0:00