Machine Learning Icon

Machine Learning

Machine Learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
167 Stories
All Topics

Practical AI Practical AI #138

Multi-GPU training is hard (without PyTorch Lightning)

William Falcon wants AI practitioners to spend more time on model development, and less time on engineering. PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research that lets you train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! In this episode, we dig deep into Lightning, how it works, and what it is enabling. William also discusses the Grid AI platform (built on top of PyTorch Lightning). This platform lets you seamlessly train 100s of Machine Learning models on the cloud from your laptop.

Practical AI Practical AI #137

Learning to learn deep learning 📖

Chris and Daniel sit down to chat about some exciting new AI developments including wav2vec-u (an unsupervised speech recognition model) and meta-learning (a new book about “How To Learn Deep Learning And Thrive In The Digital World”). Along the way they discuss engineering skills for AI developers and strategies for launching AI initiatives in established companies.

Command line interface

Command-line tools for speech and intent recognition on Linux

This isn’t merely a speech-to-text thing. It also provides intent recognition, which makes it great for doing voice commands. For example, when trained with this template, the following command:

$ voice2json transcribe-wav \
      < turn-on-the-light.wav | \
      voice2json recognize-intent | \
      jq .

Produces this JSON event:

    "text": "turn on the light",
    "intent": {
        "name": "LightState"
    "slots": {
        "state": "on"

And it can be retrained quickly enough to do it at runtime. Cool stuff!

Practical AI Practical AI #135

Elixir meets machine learning

Today we’re sharing a special crossover episode from The Changelog podcast here on Practical AI. Recently, Daniel Whitenack joined Jerod Santo to talk with José Valim, Elixir creator, about Numerical Elixir. This is José’s newest project that’s bringing Elixir into the world of machine learning. They discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook that’s built on Phoenix LiveView.

Practical AI Practical AI #133

25 years of speech technology innovation

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

The Changelog The Changelog #439

Elixir meets machine learning

This week Elixir creator José Valim joins Jerod and Practical AI’s Daniel Whitenack to discuss Numerical Elixir, his new project that’s bringing Elixir into the world of machine learning. We discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook project that’s built on Phoenix LiveView.

Practical AI Practical AI #132

Generating "hunches" using smart home data 🏠

Smart home data is complicated. There are all kinds of devices, and they are in many different combinations, geographies, configurations, etc. This complicated data situation is further exacerbated during a pandemic when time series data seems to be filled with anomalies. Evan Welbourne joins us to discuss how Amazon is synthesizing this disparate data into functionality for the next generation of smart homes. He discusses the challenges of working with smart home technology, and he describes how they developed their latest feature called “hunches.”

AI (Artificial Intelligence)

Disentangling AI, machine learning, and deep learning

This article starts with a concise description of the relationship and differences of these 3 commonly used industry terms. Then it digs into the history.

Deep learning is a subset of machine learning, which in turn is a subset of artificial intelligence, but the origins of these names arose from an interesting history. In addition, there are fascinating technical characteristics that can differentiate deep learning from other types of machine learning…essential working knowledge for anyone with ML, DL, or AI in their skillset.

Disentangling AI, machine learning, and deep learning

The New Stack Icon The New Stack

How I built an on-premises AI training testbed with Kubernetes and Kubeflow

This is part 4 in a cool series on The New Stack exploring the Kubeflow machine learning platform.

I recently built a four-node bare metal Kubernetes cluster comprising CPU and GPU hosts for all my AI experiments. Though it makes economic sense to leverage the public cloud for provisioning the infrastructure, I invested a fortune in the AI testbed that’s within my line of sight.

The author shares many insights into the choices he made while building this dream setup.

How I built an on-premises AI training testbed with Kubernetes and Kubeflow

Practical AI Practical AI #127

Women in Data Science (WiDS)

Chris has the privilege of talking with Stanford Professor Margot Gerritsen, who co-leads the Women in Data Science (WiDS) Worldwide Initiative. This is a conversation that everyone should listen to. Professor Gerritsen’s profound insights into how we can all help the women in our lives succeed - in data science and in life - is a ‘must listen’ episode for everyone, regardless of gender.


A PyTorch-based speech toolkit

SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, multi-microphone signal processing and many others.

Currently in beta.


`whereami` uses WiFi signals & ML to locate you (within 2-10 meters)

If you’re adventurous and you want to learn to distinguish between couch #1 and couch #2 (i.e. 2 meters apart), it is the most robust when you switch locations and train in turn. E.g. first in Spot A, then in Spot B then start again with A. Doing this in spot A, then spot B and then immediately using “predict” will yield spot B as an answer usually. No worries, the effect of this temporal overfitting disappears over time. And, in fact, this is only a real concern for the very short distances. Just take a sample after some time in both locations and it should become very robust.

The linked project was “almost entirely copied” from the find project, which was written in Go. It then went on to inspire whereami.js. I bet you can guess what that is.

HackerNoon Icon HackerNoon

Why ML in production is (still) broken and ways we can fix it

Hamza Tahir on HackerNoon:

By now, chances are you’ve read the famous paper about hidden technical debt by Sculley et al. from 2015. As a field, we have accepted that the actual share of Machine Learning is only a fraction of the work going into successful ML projects. The resulting complexity, especially in the transition to “live” environments, lead to large amounts of failed ML projects never reaching production.

Productionizing ML workflows has been a trending topic on Practical AI lately…

Why ML in production is (still) broken and ways we can fix it

Practical AI Practical AI #122

The AI doc will see you now

Elad Walach of Aidoc joins Chris to talk about the use of AI for medical imaging interpretation. Starting with the world’s largest annotated training data set of medical images, Aidoc is the radiologist’s best friend, helping the doctor to interpret imagery faster, more accurately, and improving the imaging workflow along the way. Elad’s vision for the transformative future of AI in medicine clearly soothes Chris’s concern about managing his aging body in the years to come. ;-)

0:00 / 0:00