Machine Learning Icon

Machine Learning

Machine Learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
54 Stories
All Topics

Victor Zhou victorzhou.com

Random Forests for complete beginners

Victor Zhou has been killin’ it lately with these explainers: In my opinion, most Machine Learning tutorials aren’t beginner-friendly enough. Last month, I wrote an introduction to Neural Networks for complete beginners. This post will adopt the same strategy, meaning it again assumes ZERO prior knowledge of machine learning. We’ll learn what Random Forests are and how they work from the ground up.

read more

Practical AI Practical AI #42

TensorFlow Dev Summit 2019

This week Daniel and Chris discuss the announcements made recently at TensorFlow Dev Summit 2019. They kick it off with the alpha release of TensorFlow 2.0, which features eager execution and an improved user experience through Keras, which has been integrated into TensorFlow itself. They round out the list with TensorFlow Datasets, TensorFlow Addons, TensorFlow Extended (TFX), and the upcoming inaugural O’Reilly TensorFlow World conference.

read more

Netflix Technology Blog Icon Netflix Technology Blog

Python at Netflix

From the Netflix Technology Blog on how they’re using Python. As many of us prepare to go to PyCon, we wanted to share a sampling of how Python is used at Netflix. We use Python through the full content lifecycle, from deciding which content to fund all the way to operating the CDN that serves the final video to 148 million members. We use and contribute to many open-source Python packages, some of which are mentioned below. If any of this interests you, check out the jobs site or find us at PyCon. We have donated a few Netflix Originals posters to the PyLadies Auction and look forward to seeing you all there.

read more

Practical AI Practical AI #40

Deep Reinforcement Learning

While attending the NVIDIA GPU Technology Conference in Silicon Valley, Chris met up with Adam Stooke, a speaker and PhD student at UC Berkeley who is doing groundbreaking work in large-scale deep reinforcement learning and robotics. Adam took Chris on a tour of deep reinforcement learning - explaining what it is, how it works, and why it’s one of the hottest technologies in artificial intelligence!

read more

Practical AI Practical AI #39

Making the world a better place at the AI for Good Foundation

Longtime listeners know that we’re always advocating for ‘AI for good’, but this week we have taken it to a whole new level. We had the privilege of chatting with James Hodson, Director of the AI for Good Foundation, about ways they have used artificial intelligence to positively-impact the world - from food production to climate change. James inspired us to find our own ways to use AI for good, and we challenge our listeners to get out there and do some good!

read more

Hamel Husain towardsdatascience.com

How to automate tasks on GitHub with machine learning for fun and profit

This is an explainer on how to build a GitHub App that predicts and applies issue labels using Tensorflow and public datasets. Hamel Husain writes: In order to show you how to create your own apps, we will walk you through the process of creating a GitHub app that can automatically label issues. Note that all of the code for this app, including the model training steps are located in this GitHub repository. See also: Issue Label Bot

read more

Practical AI Practical AI #36

Growing up to become a world-class AI expert

While at the NVIDIA GPU Technology Conference 2019 in Silicon Valley, Chris enjoyed an inspiring conversation with Anima Anandkumar. Clearly a role model - not only for women - but for anyone in the world of AI, Anima relayed how her lifelong passion for mathematics and engineering started when she was only 3 years old in India, and ultimately led to her pioneering deep learning research at Amazon Web Services, CalTech, and NVIDIA.

read more

NVIDIA Developer Blog Icon NVIDIA Developer Blog

NVIDIA Jetson Nano - A $99 computer for embedded AI

Google, Intel, and others have recently been targeting AI at the edge with things like Coral and the Neural Compute Stick, but NVIDIA is taking things a step farther. They just announced the Jetson Nano, which is a $99 computer with 472 GFLOPS of compute performance, an integrated NVIDIA GPU, and a Raspberry Pi form factor. According to NVIDIA: The compute performance, compact footprint, and flexibility of Jetson Nano brings endless possibilities to developers for creating AI-powered devices and embedded systems. And it’s not only for inference (which is the main target of things like Intel’s NCS). The Jetson Nano can also handle AI model training: since Jetson Nano can run the full training frameworks like TensorFlow, PyTorch, and Caffe, it’s also able to re-train with transfer learning for those who may not have access to another dedicated training machine and are willing to wait longer for results. Check it out! You can pre-order now.

read more

The Allen Institute for AI Icon The Allen Institute for AI

China to overtake US in AI research

China has committed to becoming the world leader in AI by 2030, with goals to build a domestic artificial intelligence industry worth nearly $150 billion (according to this CNN article). Prompted by these efforts, the Semantic Scholar team at the Allen AI Institute analyzed over two million academic AI papers published through the end of 2018. This analysis revealed the following: Our analysis shows that China has already surpassed the US in published AI papers. If current trends continue, China is poised to overtake the US in the most-cited 50% of papers this year, in the most-cited 10% of papers next year, and in the 1% of most-cited papers by 2025. Citation counts are a lagging indicator of impact, so our results may understate the rising impact of AI research originating in China. They also emphasize that US actions are making it difficult to recruit and retain foreign students and scholars, and these difficulties are likely to exacerbate the trend towards Chinese supremacy in AI research.

read more

OpenAI Icon OpenAI

OpenAI creates a "capped-profit" to help build artificial general intelligence

OpenAI, one of the largest and most influential AI research entities, was originally a non-profit. However, they just announced that they are creating a “capped-profit” entity, OpenAI LP. This capped-profit entity will supposedly help them accomplish their mission of building artificial general intelligence (AGI): We want to increase our ability to raise capital while still serving our mission, and no pre-existing legal structure we know of strikes the right balance. Our solution is to create OpenAI LP as a hybrid of a for-profit and nonprofit—which we are calling a “capped-profit” company. The fundamental idea of OpenAI LP is that investors and employees can get a capped return if we succeed at our mission, which allows us to raise investment capital and attract employees with startup-like equity. But any returns beyond that amount—and if we are successful, we expect to generate orders of magnitude more value than we’d owe to people who invest in or work at OpenAI LP—are owned by the original OpenAI Nonprofit entity. To some this makes total sense. Others have criticized the move, because they say that it misrepresents money as the only barrier to AGI or implies that OpenAI will develop it in a vacuum. What do you think? Learn more about OpenAI’s mission from one of it’s founders in this episode of Practical AI.

read more

Python github.com

GIPHY's celebrity-detecting deep learning model 🕵️‍♀️

GIPHY is proud to release our custom machine learning model that is able to discern over 2,300 celebrity faces with 98% accuracy. The model was trained to identify the most popular celebs on GIPHY, and can identify and make predictions for multiple faces across a sequence of images, like GIFs and videos. Give it a try on the demo page or download the model yourself and follow along with the examples.

read more

Practical AI Practical AI #34

The White House Executive Order on AI

The White House recently published an “Executive Order on Maintaining American Leadership in Artificial Intelligence.” In this fully connected episode, we discuss the executive order in general and criticism from the AI community. We also draw some comparisons between this US executive order and other national strategies for leadership in AI.

read more

Victor Zhou victorzhou.com

Machine learning for beginners

Victor Zhou writing on machine learning for beginners with this introduction to neural networks. …neural networks aren’t that complicated! The term “neural network” gets used as a buzzword a lot, but in reality they’re often much simpler than people imagine. This post is intended for complete beginners and assumes ZERO prior knowledge of machine learning. We’ll understand how neural networks work while implementing one from scratch in Python.

read more

Practical AI Practical AI #33

Staving off disaster through AI safety research

While covering Applied Machine Learning Days in Switzerland, Chris met El Mahdi El Mhamdi by chance, and was fascinated with his work doing AI safety research at EPFL. El Mahdi agreed to come on the show to share his research into the vulnerabilities in machine learning that bad actors can take advantage of. We cover everything from poisoned data sets and hacked machines to AI-generated propaganda and fake news, so grab your James Bond 007 kit from Q Branch, and join us for this important conversation on the dark side of artificial intelligence.

read more

Practical AI Practical AI #31

AI for social good at Intel

While at Applied Machine Learning Days in Lausanne, Switzerland, Chris had an inspiring conversation with Anna Bethke, Head of AI for Social Good at Intel. Anna reveals how she started the AI for Social Good program at Intel, and goes on to share the positive impact this program has had - from stopping animal poachers, to helping the National Center for Missing & Exploited Children. Through this AI for Social Good program, Intel clearly demonstrates how a for-profit business can effectively use AI to make the world a better place for us all.

read more

AI (Artificial Intelligence) towardsdatascience.com

A response to OpenAI's new dangerous text generator

Those of you following AI related things on Twitter have probably been overwhelmed with commentary about OpenAI’s new GPT-2 language model, which is “Too Dangerous to Make Public” (according to Wired’s interpretation of OpenAI’s statements). Is this discussion frustrating or confusing for you? Well, Ryan Lowe from McGill University has published a nice response article. He discusses the model and results in general, but also gives some perspective on the ethical implication and where the AI community should go from here. According to Lowe: “The machine learning community really, really needs to start talking openly about our standards for ethical research release”

read more

Practical AI Practical AI #30

GirlsCoding.org empowers young women to embrace computer science

Chris sat down with Marta Martinez-Cámara and Miranda Kreković to learn how GirlsCoding.org is inspiring 9–16-year-old girls to learn about computer science. The site is successfully empowering young women to recognize computer science as a valid career choice through hands-on workshops, role models, and by smashing prevalent gender stereotypes. This is an episode that you’ll want to listen to with your daughter!

read more

Practical AI Practical AI #29

How Microsoft is using AI to help the Earth

Chris caught up with Jennifer Marsman, Principal Engineer on the AI for Earth team at Microsoft, right before her speech at Applied Machine Learning Days 2019 in Lausanne, Switzerland. She relayed how the team came into being, what they do, and some of the good deeds they have done for Mother Earth. They are giving away $50 million (US) in grants over five years! It was another excellent example of AI for good!

read more

Practical AI Practical AI #28

New year’s resolution: dive into deep learning!

Fully Connected – a series where Chris and Daniel keep you up to date with everything that’s happening in the AI community. If you’re anything like us, your New Year’s resolutions probably included an AI section, so this week we explore some of the learning resources available for artificial intelligence and deep learning. Where you go with it depends upon what you want to achieve, so we discuss academic versus industry career paths, and try to set you on the Practical AI path that will help you level up.

read more

0:00 / 0:00