Chris Benson Avatar

Chris Benson

Chris Benson is Principal Artificial Intelligence Strategist at Lockheed Martin. He came to Lockheed Martin from Honeywell SPS, where he was Chief Scientist for Artificial Intelligence & Machine Learning. Chris built and operationalized Honeywell’s first dedicated AI team from the ground up. Before that he was on the AI Team at Accenture.

As a strategist and thought leader, Chris is among the world’s most in-demand professional keynote speakers on artificial intelligence, machine learning, emerging technologies, and visionary futurism. His inspirational keynotes are known for their passion, energy, and clarity. He is a seasoned storyteller who delights in captivating his audiences with inspiring narratives and insightful analysis at conferences, broadcasts, interviews, forums, and corporate events around the world.

Chris is an innovative hands-on solutions architect for artificial intelligence and machine learning - and the emerging technologies they intersect - robotics, IoT, augmented reality, blockchain, mobile, edge, and cloud.

He is Co-Host of the Practical AI podcast, which reaches thousands of AI enthusiasts each week, and is also the Founder & Organizer of the Atlanta Deep Learning Meetup - one of the largest AI communities in the world.

Chris and his family are committed animal advocates who are active in animal rescue, and strive to make strategic improvements on specific animal welfare issues through advocacy for non-partisan, no-kill, and vegan legislation and regulation.

Chris Benson’s opinions are his own.

https://chrisbenson.com

Atlanta · Twitter · GitHub · LinkedIn · Website
268 episodes

Practical AI Practical AI #153

Federated Learning 📱

Play
2021-10-12T18:20:00Z #ai +3 🎧 20,062

Federated learning is increasingly practical for machine learning developers because of the challenges we face with model and data privacy. In this fully connected episode, Chris and Daniel dive into the topic and dissect the ideas behind federated learning, practicalities of implementing decentralized training, and current uses of the technique.

Practical AI Practical AI #152

The mathematics of machine learning

Play
2021-10-05T20:15:00Z #ai +2 🎧 24,619

Tivadar Danka is an educator and content creator in the machine learning space, and he is writing a book to help practitioners go from high school mathematics to mathematics of neural networks. His explanations are lucid and easy to understand. You have never had such a fun and interesting conversation about calculus, linear algebra, and probability theory before!

Practical AI Practical AI #151

Balancing human intelligence with AI

Play
2021-09-28T21:20:00Z #ai +3 🎧 19,605

Polarity Mapping is a framework to “help problems be solved in a realistic and multidimensional manner” (see here for more info). In this week’s fully connected episode, Chris and Daniel use this framework to help them discuss how an organization can strike a good balance between human intelligence and AI. AI can’t solve everything and humans need to be in-the-loop with many AI solutions.

Practical AI Practical AI #149

Trends in data labeling

Play
2021-09-14T20:30:00Z #ai +2 🎧 19,769

Any AI play that lacks an underlying data strategy is doomed to fail, and a big part of any data strategy is labeling. Michael, from Label Studio, joins us in this episode to discuss how the industry’s perception of data labeling is shifting. We cover open source tooling, validating labels, and integrating ML/AI models in the labeling loop.

Practical AI Practical AI #147

Anaconda + Pyston and more

Play
2021-09-01T14:40:00Z #ai +2 🎧 18,653

In this episode, Peter Wang from Anaconda joins us again to go over their latest “State of Data Science” survey. The updated results include some insights related to data science work during COVID along with other topics including AutoML and model bias. Peter also tells us a bit about the exciting new partnership between Anaconda and Pyston (a fork of the standard CPython interpreter which has been extensively enhanced to improve the execution performance of most Python programs).

Practical AI Practical AI #146

Exploring a new AI lexicon

We’re back with another Fully Connected episode – Daniel and Chris dive into a series of articles called ‘A New AI Lexicon’ that collectively explore alternate narratives, positionalities, and understandings to the better known and widely circulated ways of talking about AI. The fun begins early as they discuss and debate ‘An Electric Brain’ with strong opinions, and consider viewpoints that aren’t always popular.

Practical AI Practical AI #144

SLICED - will you make the (data science) cut?

Play
2021-08-10T14:40:00Z #ai +1 🎧 17,284

SLICED is like the TV Show Chopped but for data science. Competitors get a never-before-seen dataset and two-hours to code a solution to a prediction challenge. Meg and Nick, the SLICED show hosts, join us in this episode to discuss how the show is creating much needed data science community. They give us a behind the scenes look at all the datasets, memes, contestants, scores, and chat of SLICED.

SLICED on Practical AI

Practical AI Practical AI #143

AI is creating never before heard sounds! 🎵

Play
2021-08-03T18:45:00Z #ai +1 🎧 17,540

AI is being used to transform the most personal instrument we have, our voice, into something that can be “played.” This is fascinating in and of itself, but Yotam Mann from Never Before Heard Sounds is doing so much more! In this episode, he describes how he is using neural nets to process audio in real time for musicians and how AI is poised to change the music industry forever.

Practical AI Practical AI #142

Building a data team

Play
2021-07-27T14:45:00Z #ai +3 🎧 18,203

Inspired by a recent article from Erik Bernhardsson titled “Building a data team at a mid-stage startup: a short story”, Chris and Daniel discuss all things AI/data team building. They share some stories from their experiences kick starting AI efforts at various organizations and weight the pro and cons of things like centralized data management, prototype development, and a focus on engineering skills.

Practical AI Practical AI #139

Vector databases for machine learning

Play
2021-06-22T16:00:00Z #ai +3 🎧 18,761

Pinecone is the first vector database for machine learning. Edo Liberty explains to Chris how vector similarity search works, and its advantages over traditional database approaches for machine learning. It enables one to search through billions of vector embeddings for similar matches, in milliseconds, and Pinecone is a managed service that puts this capability at the fingertips of machine learning practitioners.

Practical AI Practical AI #138

Multi-GPU training is hard (without PyTorch Lightning)

Play
2021-06-15T14:45:00Z #ai +3 🎧 15,274

William Falcon wants AI practitioners to spend more time on model development, and less time on engineering. PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research that lets you train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! In this episode, we dig deep into Lightning, how it works, and what it is enabling. William also discusses the Grid AI platform (built on top of PyTorch Lightning). This platform lets you seamlessly train 100s of Machine Learning models on the cloud from your laptop.

Practical AI Practical AI #137

Learning to learn deep learning 📖

Play
2021-06-08T18:00:00Z #ai +3 🎧 17,083

Chris and Daniel sit down to chat about some exciting new AI developments including wav2vec-u (an unsupervised speech recognition model) and meta-learning (a new book about “How To Learn Deep Learning And Thrive In The Digital World”). Along the way they discuss engineering skills for AI developers and strategies for launching AI initiatives in established companies.

Practical AI Practical AI #134

Apache TVM and OctoML

Play
2021-05-18T20:45:00Z #ai +2 🎧 11,729

90% of AI / ML applications never make it to market, because fine tuning models for maximum performance across disparate ML software solutions and hardware backends requires a ton of manual labor and is cost-prohibitive. Luis Ceze and his team created Apache TVM at the University of Washington, then left founded OctoML to bring the project to market.

Practical AI Practical AI #133

25 years of speech technology innovation

Play
2021-05-11T19:00:00Z #ai +2 🎧 11,922

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

Practical AI Practical AI #132

Generating "hunches" using smart home data 🏠

Play
2021-05-04T15:30:00Z #ai +2 🎧 11,521

Smart home data is complicated. There are all kinds of devices, and they are in many different combinations, geographies, configurations, etc. This complicated data situation is further exacerbated during a pandemic when time series data seems to be filled with anomalies. Evan Welbourne joins us to discuss how Amazon is synthesizing this disparate data into functionality for the next generation of smart homes. He discusses the challenges of working with smart home technology, and he describes how they developed their latest feature called “hunches.”

Player art
  0:00 / 0:00