Data Science Icon

Data Science

50 Stories
All Topics

Practical AI Practical AI #83

Mapping the intersection of AI and GIS

Daniel Wilson and Rob Fletcher of ESRI hang with Chris and Daniel to chat about how AI powered modern geographic information systems (GIS) and location intelligence. They illuminate the various models used for GIS, spatial analysis, remote sensing, real-time visualization, and 3D analytics. You don’t want to miss the part about their work for the DoD’s Joint AI Center in humanitarian assistance / disaster relief.

Practical AI Practical AI #81

Building a career in Data Science

Emily Robinson, co-author of the book Build a Career in Data Science, gives us the inside scoop about optimizing the data science job search. From creating one’s resume, cover letter, and portfolio to knowing how to recognize the right job at a fair compensation rate.

Emily’s expert guidance takes us from the beginning of the process to conclusion, including being successful during your early days in that fantastic new data science position.

The Changelog The Changelog #380

Productionising real-world ML data pipelines

Yetunde Dada from QuantumBlack joins Jerod for a deep dive on Kedro, a workflow tool that helps structure reproducible, scaleable, deployable, robust, and versioned data pipelines. They discuss what Kedro’s all about and how it’s “changing the landscape of data pipelines in Python”, the ins/outs of open sourcing Kedro, and how they found early success by sweating the details. Finally, Jerod asks Yetunde about her passion project: a virtual reality film which debuted at the Sundance Film Festival in January.

Practical AI Practical AI #72

How the U.S. military thinks about AI

Chris and Daniel talk with Greg Allen, Chief of Strategy and Communications at the U.S. Department of Defense (DoD) Joint Artificial Intelligence Center (JAIC). The mission of the JAIC is “to seize upon the transformative potential of artificial intelligence technology for the benefit of America’s national security… The JAIC is the official focal point of the DoD AI Strategy.” So if you want to understand how the U.S. military thinks about artificial intelligence, then this is the episode for you!

Practical AI Practical AI #59

Flying high with AI drone racing at AlphaPilot

Chris and Daniel talk with Keith Lynn, AlphaPilot Program Manager at Lockheed Martin. AlphaPilot is an open innovation challenge, developing artificial intelligence for high-speed racing drones, created through a partnership between Lockheed Martin and The Drone Racing League (DRL).

AlphaPilot challenged university teams from around the world to design AI capable of flying a drone without any human intervention or navigational pre-programming. Autonomous drones will race head-to-head through complex, three-dimensional tracks in DRL’s new Artificial Intelligence Robotic Racing (AIRR) Circuit. The winning team could win up to $2 million in prizes.

Keith shares the incredible story of how AlphaPilot got started, just prior to its debut race in Orlando, which will be broadcast on NBC Sports.

StackShare Icon StackShare

Cultivating your data lake

This post by Lauren Reeder of Segment goes over the different layers to consider when working with a data lake. What’s a data lake, you ask?

A data lake is a centralized repository that stores both structured and unstructured data and allows you to store massive amounts of data in a flexible, cost effective storage layer.

Her article explains what tools are needed and provides code & SQL statements to get started. 🤟

Andrew Ste cvcompiler.com

The most in-demand data science skills of 2019

Since data science has a huge impact on today’s businesses, the demand for DS experts is growing. At the moment I’m writing this, there are 144,527 data science jobs on LinkedIn alone. But still, it’s important to keep your finger on the pulse of the industry to be aware of the fastest and most efficient data science solutions.

Click through for key takeaways and trend analysis.

The most in-demand data science skills of 2019

Practical AI Practical AI #50

Celebrating episode 50 and the neural net!

Woo hoo! As we celebrate reaching episode 50, we come full circle to discuss the basics of neural networks. If you are just jumping into AI, then this is a great primer discussion with which to take that leap.

Our commitment to making artificial intelligence practical, productive, and accessible to everyone has never been stronger, so we invite you to join us for the next 50 episodes!

Practical AI Practical AI #49

Exposing the deception of DeepFakes

This week we bend reality to expose the deceptions of deepfake videos. We talk about what they are, why they are so dangerous, and what you can do to detect and resist their insidious influence. In a political environment rife with distrust, disinformation, and conspiracy theories, deepfakes are being weaponized and proliferated as the latest form of state-sponsored information warfare. Join us for an episode scarier than your favorite horror movie, because this AI bogeyman is real!

Practical AI Practical AI #47

GANs, RL, and transfer learning oh my!

Daniel and Chris explore three potentially confusing topics - generative adversarial networks (GANs), deep reinforcement learning (DRL), and transfer learning. Are these types of neural network architectures? Are they something different? How are they used? Well, If you have ever wondered how AI can be creative, wished you understood how robots get their smarts, or were impressed at how some AI practitioners conquer big challenges quickly, then this is your episode!

Practical AI Practical AI #45

How to get plugged into the AI community

Chris and Daniel take you on a tour of local and global AI events, and discuss how to get the most out of your experiences. From access to experts to developing new industry relationships, learn how to get your foot in the door and make connections that help you grow as an AI practitioner.

Then drawing from their own wealth of experience as speakers, they dive into what it takes to give a memorable world-class talk that your audience will love. They break down how to select the topic, write the abstract, put the presentation together, and deliver the narrative with impact!

Practical AI Practical AI #44

AI adoption in the enterprise

At the recent O’Reilly AI Conference in New York City, Chris met up with O’Reilly Chief Data Scientist Ben Lorica, the Program Chair for Strata Data, the AI Conference, and TensorFlow World.

O’Reilly’s ‘AI Adoption in the Enterprise’ report had just been released, so naturally Ben and Chris wanted to do a deep dive into enterprise AI adoption to discuss strategy, execution, and implications.

Practical AI Practical AI #42

TensorFlow Dev Summit 2019

This week Daniel and Chris discuss the announcements made recently at TensorFlow Dev Summit 2019. They kick it off with the alpha release of TensorFlow 2.0, which features eager execution and an improved user experience through Keras, which has been integrated into TensorFlow itself. They round out the list with TensorFlow Datasets, TensorFlow Addons, TensorFlow Extended (TFX), and the upcoming inaugural O’Reilly TensorFlow World conference.

Practical AI Practical AI #40

Deep Reinforcement Learning

While attending the NVIDIA GPU Technology Conference in Silicon Valley, Chris met up with Adam Stooke, a speaker and PhD student at UC Berkeley who is doing groundbreaking work in large-scale deep reinforcement learning and robotics. Adam took Chris on a tour of deep reinforcement learning - explaining what it is, how it works, and why it’s one of the hottest technologies in artificial intelligence!

Practical AI Practical AI #39

Making the world a better place at the AI for Good Foundation

Longtime listeners know that we’re always advocating for ‘AI for good’, but this week we have taken it to a whole new level. We had the privilege of chatting with James Hodson, Director of the AI for Good Foundation, about ways they have used artificial intelligence to positively-impact the world - from food production to climate change. James inspired us to find our own ways to use AI for good, and we challenge our listeners to get out there and do some good!

Hamel Husain towardsdatascience.com

How to automate tasks on GitHub with machine learning for fun and profit

This is an explainer on how to build a GitHub App that predicts and applies issue labels using Tensorflow and public datasets. Hamel Husain writes:

In order to show you how to create your own apps, we will walk you through the process of creating a GitHub app that can automatically label issues. Note that all of the code for this app, including the model training steps are located in this GitHub repository.

See also: Issue Label Bot

0:00 / 0:00