Chris Benson Avatar

Chris Benson

Chris Benson is Principal Artificial Intelligence Strategist at Lockheed Martin. He came to Lockheed Martin from Honeywell SPS, where he was Chief Scientist for Artificial Intelligence & Machine Learning. Chris built and operationalized Honeywell’s first dedicated AI team from the ground up. Before that he was on the AI Team at Accenture.

As a strategist and thought leader, Chris is among the world’s most in-demand professional keynote speakers on artificial intelligence, machine learning, emerging technologies, and visionary futurism. His inspirational keynotes are known for their passion, energy, and clarity. He is a seasoned storyteller who delights in captivating his audiences with inspiring narratives and insightful analysis at conferences, broadcasts, interviews, forums, and corporate events around the world.

Chris is an innovative hands-on solutions architect for artificial intelligence and machine learning - and the emerging technologies they intersect - robotics, IoT, augmented reality, blockchain, mobile, edge, and cloud.

He is Co-Host of the Practical AI podcast, which reaches thousands of AI enthusiasts each week, and is also the Founder & Organizer of the Atlanta Deep Learning Meetup - one of the largest AI communities in the world.

Chris and his family are committed animal advocates who are active in animal rescue, and strive to make strategic improvements on specific animal welfare issues through advocacy for non-partisan, no-kill, and vegan legislation and regulation.

Chris Benson’s opinions are his own.

https://chrisbenson.com

Atlanta · Twitter · GitHub · LinkedIn · Website
268 episodes

Practical AI Practical AI #109

When data leakage turns into a flood of trouble

Play
2020-10-20T14:10:00Z #ai +2 🎧 12,226

Rajiv Shah teaches Daniel and Chris about data leakage, and its major impact upon machine learning models. It’s the kind of topic that we don’t often think about, but which can ruin our results. Raj discusses how to use activation maps and image embedding to find leakage, so that leaking information in our test set does not find its way into our training set.

Practical AI Practical AI #108

Productionizing AI at LinkedIn

Play
2020-10-13T15:00:00Z #ai +1 🎧 10,868

Suju Rajan from LinkedIn joined us to talk about how they are operationalizing state-of-the-art AI at LinkedIn. She sheds light on how AI can and is being used in recruiting, and she weaves in some great explanations of how graph-structured data, personalization, and representation learning can be applied to LinkedIn’s candidate search problem. Suju is passionate about helping people deal with machine learning technical debt, and that gives this episode a good dose of practicality.

Practical AI Practical AI #106

Learning about (Deep) Learning

Play
2020-09-21T17:00:00Z #ai +2 🎧 12,220

In anticipation of the upcoming NVIDIA GPU Technology Conference (GTC), Will Ramey joins Daniel and Chris to talk about education for artificial intelligence practitioners, and specifically the role that the NVIDIA Deep Learning Institute plays in the industry. Will’s insights from long experience are shaping how we all stay on top of AI, so don’t miss this ‘must learn’ episode.

Practical AI Practical AI #105

When AI goes wrong

Play
2020-09-14T22:00:00Z #ai +2 🎧 10,689

So, you trained a great AI model and deployed it in your app? It’s smooth sailing from there right? Well, not in most people’s experience. Sometimes things goes wrong, and you need to know how to respond to a real life AI incident. In this episode, Andrew and Patrick from BNH.ai join us to discuss an AI incident response plan along with some general discussion of debugging models, discrimination, privacy, and security.

Practical AI Practical AI #104

Speech tech and Common Voice at Mozilla

Play
2020-09-09T15:30:00Z #ai +2 🎧 9,136

Many people are excited about creating usable speech technology. However, most of the audio data used by large companies isn’t available to the majority of people, and that data is often biased in terms of language, accent, and gender. Jenny, Josh, and Remy from Mozilla join us to discuss how Mozilla is building an open-source voice database that anyone can use to make innovative apps for devices and the web (Common Voice). They also discuss efforts through Mozilla fellowship program to develop speech tech for African languages and understand bias in data sets.

Practical AI Practical AI #103

Getting Waymo into autonomous driving

Play
2020-09-01T14:00:00Z #ai +3 🎧 9,959

Waymo’s mission is to make it safe and easy for people and things to get where they’re going.
After describing the state of the industry, Drago Anguelov - Principal Scientist and Head of Research at Waymo - takes us on a deep dive into the world of AI-powered autonomous driving. Starting with Waymo’s approach to autonomous driving, Drago then delights Daniel and Chris with a tour of the algorithmic tools in the autonomy toolbox.

Practical AI Practical AI #102

Hidden Door and so much more

Play
2020-08-24T20:00:00Z #ai +4 🎧 8,935

Hilary Mason is building a new way for kids and families to create stories with AI. It’s called Hidden Door, and in her first interview since founding it, Hilary reveals to Chris and Daniel what the experience will be like for kids. It’s the first Practical AI episode in which some of the questions came from Chris’s 8yo daughter Athena.

Hilary also shares her insights into various topics, like how to build data science communities during the COVID-19 Pandemic, reasons why data science goes wrong, and how to build great data-based products. Don’t miss this episode packed with hard-won wisdom!

Changelog Interviews Changelog Interviews #409

Celebrating Practical AI turning 100!! 🎉

Play
2020-08-21T16:15:00Z #ai +2 🎧 22,286

We’re so excited to see Chris and Daniel take this show to 100 episodes, and that’s exactly why we’re rebroadcasting Practical AI #100 here on The Changelog. They’ve had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and I joined the first episode to help kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)

Practical AI Practical AI #101

Building the world's most popular data science platform

Play
2020-08-17T20:00:00Z #ai +1 🎧 10,028

Everyone working in data science and AI knows about Anaconda and has probably “conda” installed something. But how did Anaconda get started and what are they working on now? Peter Wang, CEO of Anaconda and creator of PyData and popular packages like Bokeh and DataShader, joins us to discuss that and much more. Peter gives some great insights on the Python AI ecosystem and very practical advice for scaling up your data science operation.

Practical AI Practical AI #100

Practical AI turns 100!!! 🎉

Play
2020-08-11T15:00:00Z #ai +2 🎧 9,405

We made it to 100 episodes of Practical AI! It has been a privilege to have had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and Adam from The Changelog helped us kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)

Practical AI Practical AI #98

🤗 All things transformers with Hugging Face

Play
2020-07-27T18:30:00Z #ai +1 🎧 11,188

Sash Rush, of Cornell Tech and Hugging Face, catches us up on all the things happening with Hugging Face and transformers. Last time we had Clem from Hugging Face on the show (episode 35), their transformers library wasn’t even a thing yet. Oh how things have changed! This time Sasha tells us all about Hugging Face’s open source NLP work, gives us an intro to the key components of transformers, and shares his perspective on the future of AI research conferences.

Practical AI Practical AI #97

MLOps and tracking experiments with Allegro AI

Play
2020-07-20T15:40:00Z #ai +2 🎧 9,093

DevOps for deep learning is well… different. You need to track both data and code, and you need to run multiple different versions of your code for long periods of time on accelerated hardware. Allegro AI is helping data scientists manage these workflows with their open source MLOps solution called Trains. Nir Bar-Lev, Allegro’s CEO, joins us to discuss their approach to MLOps and how to make deep learning development more robust.

Practical AI Practical AI #96

Practical AI Ethics

The multidisciplinary field of AI Ethics is brand new, and is currently being pioneered by a relatively small number of leading AI organizations and academic institutions around the world. AI Ethics focuses on ensuring that unexpected outcomes from AI technology implementations occur as rarely as possible. Daniel and Chris discuss strategies for how to arrive at AI ethical principles suitable for your own organization, and what is involved in implementing those strategies in the real world. Tune in for a practical AI primer on AI Ethics!

Practical AI Practical AI #93

Roles to play in the AI dev workflow

Play
2020-06-22T19:45:00Z #ai +2 🎧 9,210

This full connected has it all: news, updates on AI/ML tooling, discussions about AI workflow, and learning resources. Chris and Daniel breakdown the various roles to be played in AI development including scoping out a solution, finding AI value, experimentation, and more technical engineering tasks. They also point out some good resources for exploring bias in your data/model and monitoring for fairness.

Practical AI Practical AI #92

The long road to AGI

Play
2020-06-15T18:15:00Z #ai +3 🎧 9,403

Daniel and Chris go beyond the current state of the art in deep learning to explore the next evolutions in artificial intelligence. From Yoshua Bengio’s NeurIPS keynote, which urges us forward towards System 2 deep learning, to DARPA’s vision of a 3rd Wave of AI, Chris and Daniel investigate the incremental steps between today’s AI and possible future manifestations of artificial general intelligence (AGI).

Practical AI Practical AI #90

Exploring NVIDIA's Ampere & the A100 GPU

Play
2020-05-26T17:20:00Z #fully-connected +3 🎧 9,383

On the heels of NVIDIA’s latest announcements, Daniel and Chris explore how the new NVIDIA Ampere architecture evolves the high-performance computing (HPC) landscape for artificial intelligence. After investigating the new specifications of the NVIDIA A100 Tensor Core GPU, Chris and Daniel turn their attention to the data center with the NVIDIA DGX A100, and then finish their journey at “the edge” with the NVIDIA EGX A100 and the NVIDIA Jetson Xavier NX.

Practical AI Practical AI #89

AI for Good: clean water access in Africa

Play
2020-05-11T17:00:00Z #ai +2 🎧 9,463

Chandler McCann tells Daniel and Chris about how DataRobot engaged in a project to develop sustainable water solutions with the Global Water Challenge (GWC). They analyzed over 500,000 data points to predict future water point breaks. This enabled African governments to make data-driven decisions related to budgeting, preventative maintenance, and policy in order to promote and protect people’s access to safe water for drinking and washing. From this effort sprang DataRobot’s larger AI for Good initiative.

Player art
  0:00 / 0:00