Practical AI

Practical AI Artwork

Making artificial intelligence practical, productive, and accessible to everyone

Practical AI Practical AI #72

How the U.S. military thinks about AI

Chris and Daniel talk with Greg Allen, Chief of Strategy and Communications at the U.S. Department of Defense (DoD) Joint Artificial Intelligence Center (JAIC). The mission of the JAIC is “to seize upon the transformative potential of artificial intelligence technology for the benefit of America’s national security… The JAIC is the official focal point of the DoD AI Strategy.” So if you want to understand how the U.S. military thinks about artificial intelligence, then this is the episode for you!

Practical AI Practical AI #68

Modern NLP with spaCy

SpaCy is awesome for NLP! It’s easy to use, has widespread adoption, is open source, and integrates the latest language models. Ines Montani and Matthew Honnibal (core developers of spaCy and co-founders of Explosion) join us to discuss the history of the project, its capabilities, and the latest trends in NLP. We also dig into the practicalities of taking NLP workflows to production. You don’t want to miss this episode!

Practical AI Practical AI #74

Testing ML systems

Production ML systems include more than just the model. In these complicated systems, how do you ensure quality over time, especially when you are constantly updating your infrastructure, data and models? Tania Allard joins us to discuss the ins and outs of testing ML systems. Among other things, she presents a simple formula that helps you score your progress towards a robust system and identify problem areas.

Practical AI Practical AI #62

It's time to talk time series

Times series data is everywhere! I mean, seriously, try to think of some data that isn’t a time series. You have stock prices and weather data, which are the classics, but you also have a time series of images on your phone, time series log data coming off of your servers, and much more. In this episode, Anais from InfluxData helps us understand the range of methods and problems related to time series data. She also gives her perspective on when statistical methods might perform better than neural nets or at least be a more reasonable choice.

time series

Practical AI Practical AI #65

Intelligent systems and knowledge graphs

There’s a lot of hype about knowledge graphs and AI-methods for building or using them, but what exactly is a knowledge graph? How is it different from a database or other data store? How can I build my own knowledge graph? James Fletcher from Grakn Labs helps us understand knowledge graphs in general and some practical steps towards creating your own. He also discusses graph neural networks and the future of graph-augmented methods.

Practical AI Practical AI #78

NLP for the world's 7000+ languages

Expanding AI technology to the local languages of emerging markets presents huge challenges. Good data is scarce or non-existent. Users often have bandwidth or connectivity issues. Existing platforms target only a small number of high-resource languages.

Our own Daniel Whitenack (data scientist at SIL International) and Dan Jeffries (from Pachyderm) discuss how these and related problems will only be solved when AI technology and resources from industry are combined with linguistic expertise from those on the ground working with local language communities. They have illustrated this approach as they work on pushing voice technology into emerging markets.

0:00 / 0:00