Practical AI

Practical AI Artwork

Making artificial intelligence practical, productive & accessible to everyone

Practical AI Practical AI #238

Fine-tuning vs RAG

2023-09-06T12:30:00Z #ai +1 🎧 36,516

In this episode we welcome back our good friend Demetrios from the MLOps Community to discuss fine-tuning vs. retrieval augmented generation. Along the way, we also chat about OpenAI Enterprise, results from the MLOps Community LLM survey, and the orchestration and evaluation of generative AI workloads.

Practical AI Practical AI #234

Vector databases (beyond the hype)

2023-08-01T18:30:00Z #ai +1 🎧 36,306

There’s so much talk (and hype) these days about vector databases. We thought it would be timely and practical to have someone on the show that has been hands on with the various options and actually tried to build applications leveraging vector search. Prashanth Rao is a real practitioner that has spent and huge amount of time exploring the expanding set of vector database offerings. After introducing vector database and giving us a mental model of how they fit in with other datastores, Prashanth digs into the trade offs as related to indices, hosting options, embedding vs. query optimization, and more.

Practical AI Practical AI #228

From ML to AI to Generative AI

2023-06-21T13:30:00Z #ai +2 🎧 35,020

Chris and Daniel take a step back to look at how generative AI fits into the wider landscape of ML/AI and data science. They talk through the differences in how one approaches “traditional” supervised learning and how practitioners are approaching generative AI based solutions (such as those using Midjourney or GPT family models). Finally, they talk through the risk and compliance implications of generative AI, which was in the news this week in the EU.

Practical AI Practical AI #219

Capabilities of LLMs 🤯

2023-04-19T21:00:00Z #ai +1 🎧 34,603

Large Language Model (LLM) capabilities have reached new heights and are nothing short of mind-blowing! However, with so many advancements happening at once, it can be overwhelming to keep up with all the latest developments. To help us navigate through this complex terrain, we’ve invited Raj - one of the most adept at explaining State-of-the-Art (SOTA) AI in practical terms - to join us on the podcast.

Raj discusses several intriguing topics such as in-context learning, reasoning, LLM options, and related tooling. But that’s not all! We also hear from Raj about the rapidly growing data science and AI community on TikTok.

Practical AI Practical AI #240

Generative models: exploration to deployment

2023-10-03T19:00:00Z #ai +2 🎧 34,510

What is the model lifecycle like for experimenting with and then deploying generative AI models? Although there are some similarities, this lifecycle differs somewhat from previous data science practices in that models are typically not trained from scratch (or even fine-tuned). Chris and Daniel give a high level overview in this effort and discuss model optimization and serving.

Practical AI Practical AI #236

The new AI app stack

2023-08-23T12:00:00Z #ai +2 🎧 34,242

Recently a16z released a diagram showing the “Emerging Architectures for LLM Applications.” In this episode, we expand on things covered in that diagram to a more general mental model for the new AI app stack. We cover a variety of things from model “middleware” for caching and control to app orchestration.

Practical AI Practical AI #150

From notebooks to Netflix scale with Metaflow

2021-09-21T14:45:00Z #ai +2 🎧 33,331

As you start developing an AI/ML based solution, you quickly figure out that you need to run workflows. Not only that, you might need to run those workflows across various kinds of infrastructure (including GPUs) at scale. Ville Tuulos developed Metaflow while working at Netflix to help data scientists scale their work. In this episode, Ville tells us a bit more about Metaflow, his new book on data science infrastructure, and his approach to helping scale ML/AI work.

Practical AI Practical AI #237

Automating code optimization with LLMs

2023-08-29T21:30:00Z #ai +1 🎧 32,574

You might have heard a lot about code generation tools using AI, but could LLMs and generative AI make our existing code better? In this episode, we sit down with Mike from TurinTech to hear about practical code optimizations using AI “translation” of slow to fast code. We learn about their process for accomplishing this task along with impressive results when automated code optimization is run on existing open source projects.

Practical AI Practical AI #235

Blueprint for an AI Bill of Rights

2023-08-09T16:20:00Z #ai +3 🎧 32,218

In this Fully Connected episode, Daniel and Chris kick it off by noting that Stability AI released their SDXL 1.0 LLM! They discuss its virtues, and then dive into a discussion regarding how the United States, European Union, and other entities are approaching governance of AI through new laws and legal frameworks. In particular, they review the White House’s approach, noting the potential for unexpected consequences.

Practical AI Practical AI #232

Legal consequences of generated content

2023-07-18T18:30:00Z #ai +2 🎧 30,901

As a technologist, coder, and lawyer, few people are better equipped to discuss the legal and practical consequences of generative AI than Damien Riehl. He demonstrated this a couple years ago by generating, writing to disk, and then releasing every possible musical melody. Damien joins us to answer our many questions about generated content, copyright, dataset licensing/usage, and the future of knowledge work.

Practical AI Practical AI #233

There's a new Llama in town

2023-07-25T19:00:00Z #ai 🎧 30,770

It was an amazing week in AI news. Among other things, there is a new NeRF and a new Llama in town!!! Zip-NeRF can create some amazing 3D scenes based on 2D images, and Llama 2 from Meta promises to change the LLM landscape. Chris and Daniel dive into these and they compare some of the recently released OpenAI functionality to Anthropic’s Claude 2.

Practical AI Practical AI #221

Large models on CPUs

2023-05-02T16:00:00Z #ai +1 🎧 30,039

Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all.

Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.

Practical AI Practical AI #230

Cambrian explosion of generative models

2023-07-06T17:30:00Z #ai +3 🎧 29,551

In this Fully Connected episode, Daniel and Chris explore recent highlights from the current model proliferation wave sweeping the world - including Stable Diffusion XL, OpenChat, Zeroscope XL, and Salesforce XGen. They note the rapid rise of open models, and speculate that just as in open source software, open models will dominate the future. Such rapid advancement creates its own problems though, so they finish by itemizing concerns such as cybersecurity, workflow productivity, and impact on human culture.

Practical AI Practical AI #222

The last mile of AI app development

2023-05-11T13:00:00Z #ai +3 🎧 29,410

There are a ton of problems around building LLM apps in production and the last mile of that problem. Travis Fischer, builder of open AI projects like @ChatGPTBot, joins us to talk through these problems (and how to overcome them). He helps us understand the hierarchy of complexity from simple prompting to augmentation, agents, and fine-tuning. Along the way we discuss the frontend developer community that is rapidly adopting AI technology via Typescript (not Python).

Practical AI Practical AI #224

Data augmentation with LlamaIndex

2023-05-23T16:15:00Z #ai +1 🎧 29,080

Large Language Models (LLMs) continue to amaze us with their capabilities. However, the utilization of LLMs in production AI applications requires the integration of private data. Join us as we have a captivating conversation with Jerry Liu from LlamaIndex, where he provides valuable insights into the process of data ingestion, indexing, and query specifically tailored for LLM applications. Delving into the topic, we uncover different query patterns and venture beyond the realm of vector databases.

Practical AI Practical AI #216

Explainable AI that is accessible for all humans

2023-03-28T15:30:00Z #ai 🎧 28,958

We are seeing an explosion of AI apps that are (at their core) a thin UI on top of calls to OpenAI generative models. What risks are associated with this sort of approach to AI integration, and is explainability and accountability something that can be achieved in chat-based assistants?

Beth Rudden of has been thinking about this topic for some time and has developed an ontological approach to creating conversational AI. We hear more about that approach and related work in this episode.

Practical AI Practical AI #220

Causal inference

2023-04-25T16:35:00Z #ai 🎧 28,759

With all the LLM hype, it’s worth remembering that enterprise stakeholders want answers to “why” questions. Enter causal inference. Paul Hünermund has been doing research and writing on this topic for some time and joins us to introduce the topic. He also shares some relevant trends and some tips for getting started with methods including double machine learning, experimentation, difference-in-difference, and more.

Practical AI Practical AI #229

Automated cartography using AI

2023-06-28T14:30:00Z #ai +1 🎧 28,707

Your feed might be dominated by LLMs these days, but there are some amazing things happening in computer vision that you shouldn’t ignore! In this episode, we bring you one of those amazing stories from Gabriel Ortiz, who is working with the government of Cantabria in Spain to automate cartography and apply AI to geospatial analysis. We hear about how AI tooling fits into the GIS workflow, and Gabriel shares some of his recent work (including work that can identify individual people, invasive plant species, building and more from aerial survey data).

Practical AI Practical AI #243

Self-hosting & scaling models

2023-10-31T18:00:00Z #ai +2 🎧 28,704

We’re excited to have Tuhin join us on the show once again to talk about self-hosting open access models. Tuhin’s company Baseten specializes in model deployment and monitoring at any scale, and it was a privilege to talk with him about the trends he is seeing in both tooling and usage of open access models. We were able to touch on the common use cases for integrating self-hosted models and how the boom in generative AI has influenced that ecosystem.

Practical AI Practical AI #231

A developer's toolkit for SOTA AI

2023-07-12T21:00:00Z #ai +2 🎧 28,631

Chris sat down with Varun Mohan and Anshul Ramachandran, CEO / Cofounder and Lead of Enterprise and Partnership at Codeium, respectively. They discussed how to streamline and enable modern development in generative AI and large language models (LLMs). Their new tool, Codeium, was born out of the insights they gleaned from their work in GPU software and solutions development, particularly with respect to generative AI, large language models, and supporting infrastructure. Codeium is a free AI-powered toolkit for developers, with in-house models and infrastructure - not another API wrapper.

Practical AI Practical AI #242

Deep learning in Rust with Burn 🔥

2023-10-24T20:40:00Z #ai +2 🎧 28,581

It seems like everyone is interested in Rust these days. Even the most popular Python linter, Ruff, isn’t written in Python! It’s written in Rust. But what is the state of training or inferencing deep learning models in Rust? In this episode, we are joined by Nathaniel Simard, the creator burn. We discuss Rust in general, the need to have support for AI in multiple languages, and the current state of doing “AI things” in Rust.

Practical AI Practical AI #244

Government regulation of AI has arrived

2023-11-07T14:00:00Z #ai +2 🎧 28,380

On Monday, October 30, 2023, the U.S. White House issued its Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Two days later, a policy paper was issued by the U.K. government entitled The Bletchley Declaration by Countries Attending the AI Safety Summit, 1-2 November 2023. It was signed by 29 countries, including the United States and China, the global leaders in AI research.

In this Fully Connected episode, Daniel and Chris parse the details and highlight key takeaways from these documents, especially the extensive and detailed executive order, which has the force of law in the United States.

Practical AI Practical AI #251

AI predictions for 2024

2024-01-10T19:30:00Z #ai +1 🎧 28,319

We scoured the internet to find all the AI related predictions for 2024 (at least from people that might know what they are talking about), and, in this episode, we talk about some of the common themes. We also take a moment to look back at 2023 commenting with some distance on a crazy AI year.

Practical AI Practical AI #249

The state of open source AI

2023-12-12T19:45:00Z #oss +1
🎧 28,249

The new open source AI book from PremAI starts with “As a data scientist/ML engineer/developer with a 9 to 5 job, it’s difficult to keep track of all the innovations.” We couldn’t agree more, and we are so happy that this week’s guest Casper (among other contributors) have created this resource for practitioners.

During the episode, we cover the key categories to think about as you try to navigate the open source AI ecosystem, and Casper gives his thoughts on fine-tuning, vector DBs & more.

Practical AI Practical AI #225

Controlled and compliant AI applications

2023-05-31T17:00:00Z #ai +2 🎧 27,679

You can’t build robust systems with inconsistent, unstructured text output from LLMs. Moreover, LLM integrations scare corporate lawyers, finance departments, and security professionals due to hallucinations, cost, lack of compliance (e.g., HIPAA), leaked IP/PII, and “injection” vulnerabilities.

In this episode, Chris interviews Daniel about his new company called Prediction Guard, which addresses these issues. They discuss some practical methodologies for getting consistent, structured output from compliant AI systems. These systems, driven by open access models and various kinds of LLM wrappers, can help you delight customers AND navigate the increasing restrictions on “GPT” models.

Practical AI Practical AI #223

Creating instruction tuned models

2023-05-16T18:20:00Z #ai +1 🎧 27,470

At the recent ODSC East conference, Daniel got a chance to sit down with Erin Mikail Staples to discuss the process of gathering human feedback and creating an instruction tuned Large Language Models (LLM). They also chatted about the importance of open data and practical tooling for data annotation and fine-tuning. Do you want to create your own custom generative AI models? This is the episode for you!

Player art
  0:00 / 0:00