Practical AI

Practical AI Artwork

Making artificial intelligence practical, productive & accessible to everyone

Practical AI Practical AI #150

From notebooks to Netflix scale with Metaflow

Play
2021-09-21T14:45:00Z #ai +2 🎧 33,602

As you start developing an AI/ML based solution, you quickly figure out that you need to run workflows. Not only that, you might need to run those workflows across various kinds of infrastructure (including GPUs) at scale. Ville Tuulos developed Metaflow while working at Netflix to help data scientists scale their work. In this episode, Ville tells us a bit more about Metaflow, his new book on data science infrastructure, and his approach to helping scale ML/AI work.

Practical AI Practical AI #149

Trends in data labeling

Play
2021-09-14T20:30:00Z #ai +2 🎧 19,784

Any AI play that lacks an underlying data strategy is doomed to fail, and a big part of any data strategy is labeling. Michael, from Label Studio, joins us in this episode to discuss how the industry’s perception of data labeling is shifting. We cover open source tooling, validating labels, and integrating ML/AI models in the labeling loop.

Practical AI Practical AI #147

Anaconda + Pyston and more

Play
2021-09-01T14:40:00Z #ai +2 🎧 18,664

In this episode, Peter Wang from Anaconda joins us again to go over their latest “State of Data Science” survey. The updated results include some insights related to data science work during COVID along with other topics including AutoML and model bias. Peter also tells us a bit about the exciting new partnership between Anaconda and Pyston (a fork of the standard CPython interpreter which has been extensively enhanced to improve the execution performance of most Python programs).

Practical AI Practical AI #146

Exploring a new AI lexicon

We’re back with another Fully Connected episode – Daniel and Chris dive into a series of articles called ‘A New AI Lexicon’ that collectively explore alternate narratives, positionalities, and understandings to the better known and widely circulated ways of talking about AI. The fun begins early as they discuss and debate ‘An Electric Brain’ with strong opinions, and consider viewpoints that aren’t always popular.

Practical AI Practical AI #145

NLP to help pregnant mothers in Kenya

Play
2021-08-17T14:30:00Z #ai +1 🎧 17,549

In Kenya, 33% of maternal deaths are caused by delays in seeking care, and 55% of maternal deaths are caused by delays in action or inadequate care by providers. Jacaranda Health is employing NLP and dialogue system techniques to help mothers experience childbirth safely and with respect and to help newborns get a safe start in life. Jay and Sathy from Jacaranda join us in this episode to discuss how they are using AI to prioritize incoming SMS messages from mothers and help them get the care they need.

Practical AI Practical AI #144

SLICED - will you make the (data science) cut?

Play
2021-08-10T14:40:00Z #ai +1 🎧 17,297

SLICED is like the TV Show Chopped but for data science. Competitors get a never-before-seen dataset and two-hours to code a solution to a prediction challenge. Meg and Nick, the SLICED show hosts, join us in this episode to discuss how the show is creating much needed data science community. They give us a behind the scenes look at all the datasets, memes, contestants, scores, and chat of SLICED.

SLICED on Practical AI

Practical AI Practical AI #143

AI is creating never before heard sounds! 🎵

Play
2021-08-03T18:45:00Z #ai +1 🎧 17,550

AI is being used to transform the most personal instrument we have, our voice, into something that can be “played.” This is fascinating in and of itself, but Yotam Mann from Never Before Heard Sounds is doing so much more! In this episode, he describes how he is using neural nets to process audio in real time for musicians and how AI is poised to change the music industry forever.

Practical AI Practical AI #142

Building a data team

Play
2021-07-27T14:45:00Z #ai +3 🎧 18,215

Inspired by a recent article from Erik Bernhardsson titled “Building a data team at a mid-stage startup: a short story”, Chris and Daniel discuss all things AI/data team building. They share some stories from their experiences kick starting AI efforts at various organizations and weight the pro and cons of things like centralized data management, prototype development, and a focus on engineering skills.

Practical AI Practical AI #139

Vector databases for machine learning

Play
2021-06-22T16:00:00Z #ai +3 🎧 18,773

Pinecone is the first vector database for machine learning. Edo Liberty explains to Chris how vector similarity search works, and its advantages over traditional database approaches for machine learning. It enables one to search through billions of vector embeddings for similar matches, in milliseconds, and Pinecone is a managed service that puts this capability at the fingertips of machine learning practitioners.

Practical AI Practical AI #138

Multi-GPU training is hard (without PyTorch Lightning)

Play
2021-06-15T14:45:00Z #ai +3 🎧 15,286

William Falcon wants AI practitioners to spend more time on model development, and less time on engineering. PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research that lets you train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! In this episode, we dig deep into Lightning, how it works, and what it is enabling. William also discusses the Grid AI platform (built on top of PyTorch Lightning). This platform lets you seamlessly train 100s of Machine Learning models on the cloud from your laptop.

Practical AI Practical AI #137

Learning to learn deep learning 📖

Play
2021-06-08T18:00:00Z #ai +3 🎧 17,099

Chris and Daniel sit down to chat about some exciting new AI developments including wav2vec-u (an unsupervised speech recognition model) and meta-learning (a new book about “How To Learn Deep Learning And Thrive In The Digital World”). Along the way they discuss engineering skills for AI developers and strategies for launching AI initiatives in established companies.

Practical AI Practical AI #135

Elixir meets machine learning

Play
2021-05-26T14:45:00Z #elixir +2 🎧 13,043

Today we’re sharing a special crossover episode from The Changelog podcast here on Practical AI. Recently, Daniel Whitenack joined Jerod Santo to talk with José Valim, Elixir creator, about Numerical Elixir. This is José’s newest project that’s bringing Elixir into the world of machine learning. They discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook that’s built on Phoenix LiveView.

Practical AI Practical AI #134

Apache TVM and OctoML

Play
2021-05-18T20:45:00Z #ai +2 🎧 11,737

90% of AI / ML applications never make it to market, because fine tuning models for maximum performance across disparate ML software solutions and hardware backends requires a ton of manual labor and is cost-prohibitive. Luis Ceze and his team created Apache TVM at the University of Washington, then left founded OctoML to bring the project to market.

Practical AI Practical AI #133

25 years of speech technology innovation

Play
2021-05-11T19:00:00Z #ai +2 🎧 11,930

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

Practical AI Practical AI #132

Generating "hunches" using smart home data 🏠

Play
2021-05-04T15:30:00Z #ai +2 🎧 11,531

Smart home data is complicated. There are all kinds of devices, and they are in many different combinations, geographies, configurations, etc. This complicated data situation is further exacerbated during a pandemic when time series data seems to be filled with anomalies. Evan Welbourne joins us to discuss how Amazon is synthesizing this disparate data into functionality for the next generation of smart homes. He discusses the challenges of working with smart home technology, and he describes how they developed their latest feature called “hunches.”

Practical AI Practical AI #129

Going full bore with Graphcore!

Play
2021-04-13T19:15:00Z #ai +4 🎧 10,855

Dave Lacey takes Daniel and Chris on a journey that connects the user interfaces that we already know - TensorFlow and PyTorch - with the layers that connect to the underlying hardware. Along the way, we learn about Poplar Graph Framework Software. If you are the type of practitioner who values ‘under the hood’ knowledge, then this is the episode for you.

Practical AI Practical AI #127

Women in Data Science (WiDS)

Play
2021-03-30T18:30:00Z #ai +3 🎧 10,837

Chris has the privilege of talking with Stanford Professor Margot Gerritsen, who co-leads the Women in Data Science (WiDS) Worldwide Initiative. This is a conversation that everyone should listen to. Professor Gerritsen’s profound insights into how we can all help the women in our lives succeed - in data science and in life - is a ‘must listen’ episode for everyone, regardless of gender.

Practical AI Practical AI #124

Green AI 🌲

Play
2021-03-02T15:40:00Z #ai +1 🎧 11,407

Empirical analysis from Roy Schwartz (Hebrew University of Jerusalem) and Jesse Dodge (AI2) suggests the AI research community has paid relatively little attention to computational efficiency. A focus on accuracy rather than efficiency increases the carbon footprint of AI research and increases research inequality. In this episode, Jesse and Roy advocate for increased research activity in Green AI (AI research that is more environmentally friendly and inclusive). They highlight success stories and help us understand the practicalities of making our workflows more efficient.

Practical AI Practical AI #122

The AI doc will see you now

Play
2021-02-16T14:00:00Z #ai +2 🎧 11,298

Elad Walach of Aidoc joins Chris to talk about the use of AI for medical imaging interpretation. Starting with the world’s largest annotated training data set of medical images, Aidoc is the radiologist’s best friend, helping the doctor to interpret imagery faster, more accurately, and improving the imaging workflow along the way. Elad’s vision for the transformative future of AI in medicine clearly soothes Chris’s concern about managing his aging body in the years to come. ;-)

Player art
  0:00 / 0:00