Chris Benson Avatar

Chris Benson

Chris Benson is Principal Artificial Intelligence Strategist at Lockheed Martin. He came to Lockheed Martin from Honeywell SPS, where he was Chief Scientist for Artificial Intelligence & Machine Learning. Chris built and operationalized Honeywell’s first dedicated AI team from the ground up. Before that he was on the AI Team at Accenture.

As a strategist and thought leader, Chris is among the world’s most in-demand professional keynote speakers on artificial intelligence, machine learning, emerging technologies, and visionary futurism. His inspirational keynotes are known for their passion, energy, and clarity. He is a seasoned storyteller who delights in captivating his audiences with inspiring narratives and insightful analysis at conferences, broadcasts, interviews, forums, and corporate events around the world.

Chris is an innovative hands-on solutions architect for artificial intelligence and machine learning - and the emerging technologies they intersect - robotics, IoT, augmented reality, blockchain, mobile, edge, and cloud.

He is Co-Host of the Practical AI podcast, which reaches thousands of AI enthusiasts each week, and is also the Founder & Organizer of the Atlanta Deep Learning Meetup - one of the largest AI communities in the world.

Chris and his family are committed animal advocates who are active in animal rescue, and strive to make strategic improvements on specific animal welfare issues through advocacy for non-partisan, no-kill, and vegan legislation and regulation.

Chris Benson’s opinions are his own.

https://chrisbenson.com

Atlanta · Twitter · GitHub · LinkedIn · Website
268 episodes

Practical AI Practical AI #68

Modern NLP with spaCy

Play
2019-12-09T19:35:36Z #ai +1 🎧 10,109

SpaCy is awesome for NLP! It’s easy to use, has widespread adoption, is open source, and integrates the latest language models. Ines Montani and Matthew Honnibal (core developers of spaCy and co-founders of Explosion) join us to discuss the history of the project, its capabilities, and the latest trends in NLP. We also dig into the practicalities of taking NLP workflows to production. You don’t want to miss this episode!

Practical AI Practical AI #66

Build custom ML tools with Streamlit

Play
2019-11-25T16:29:15Z #ai +2 🎧 8,003

Streamlit recently burst onto the scene with their intuitive, open source solution for building custom ML/AI tools. It allows data scientists and ML engineers to rapidly build internal or external UIs without spending time on frontend development. In this episode, Adrien Treuille joins us to discuss ML/AI app development in general and Streamlit. We talk about the practicalities of working with Streamlit along with its seemingly instant adoption by AI2, Stripe, Stitch Fix, Uber, and Twitter.

Practical AI Practical AI #65

Intelligent systems and knowledge graphs

Play
2019-11-18T17:08:37Z #ai 🎧 9,698

There’s a lot of hype about knowledge graphs and AI-methods for building or using them, but what exactly is a knowledge graph? How is it different from a database or other data store? How can I build my own knowledge graph? James Fletcher from Grakn Labs helps us understand knowledge graphs in general and some practical steps towards creating your own. He also discusses graph neural networks and the future of graph-augmented methods.

Practical AI Practical AI #64

Robot hands solving Rubik's cubes

Play
2019-11-11T16:07:15Z #ai +1 🎧 7,027

Everyone is talking about it. OpenAI trained a pair of neural nets that enable a robot hand to solve a Rubik’s cube. That is super dope! The results have also generated a lot of commentary and controversy, mainly related to the way in which the results were represented on OpenAI’s blog. We dig into all of this in on today’s Fully Connected episode, and we point you to a few places where you can learn more about reinforcement learning.

robot hand

Practical AI Practical AI #63

Open source data labeling tools

Play
2019-11-05T12:00:00Z #ai +1 🎧 8,576

What’s the most practical of practical AI things? Data labeling of course! It’s also one of the most time consuming and error prone processes that we deal with in AI development. Michael Malyuk of Heartex and Label Studio joins us to discuss various data labeling challenges and open source tooling to help us overcome those challenges.

Practical AI Practical AI #62

It's time to talk time series

Play
2019-10-28T18:57:57Z #ai 🎧 9,759

Times series data is everywhere! I mean, seriously, try to think of some data that isn’t a time series. You have stock prices and weather data, which are the classics, but you also have a time series of images on your phone, time series log data coming off of your servers, and much more. In this episode, Anais from InfluxData helps us understand the range of methods and problems related to time series data. She also gives her perspective on when statistical methods might perform better than neural nets or at least be a more reasonable choice.

time series

Practical AI Practical AI #61

AI in the browser

Play
2019-10-21T16:43:55Z #ai +3 🎧 8,027

We’ve mentioned ML/AI in the browser and in JS a bunch on this show, but we haven’t done a deep dive on the subject… until now! Victor Dibia helps us understand why people are interested in porting models to the browser and how people are using the functionality. We discuss TensorFlow.js and some applications built using TensorFlow.js

Practical AI Practical AI #59

Flying high with AI drone racing at AlphaPilot

Play
2019-10-07T16:25:43Z #ai +3 🎧 7,808

Chris and Daniel talk with Keith Lynn, AlphaPilot Program Manager at Lockheed Martin. AlphaPilot is an open innovation challenge, developing artificial intelligence for high-speed racing drones, created through a partnership between Lockheed Martin and The Drone Racing League (DRL).

AlphaPilot challenged university teams from around the world to design AI capable of flying a drone without any human intervention or navigational pre-programming. Autonomous drones will race head-to-head through complex, three-dimensional tracks in DRL’s new Artificial Intelligence Robotic Racing (AIRR) Circuit. The winning team could win up to $2 million in prizes.

Keith shares the incredible story of how AlphaPilot got started, just prior to its debut race in Orlando, which will be broadcast on NBC Sports.

Practical AI Practical AI #55

AutoML and AI at Google

Play
2019-09-09T21:06:22Z #ai +2 🎧 9,164

We’re talking with Sherol Chen, a machine learning developer, about AI at Google and AutoML methods. Sherol explains how the various AI groups within Google work together and how AutoML fits into that puzzle. She also explains how to get started with AutoML step-by-step (this is “practical” AI after all).

Practical AI Practical AI #53

Serving deep learning models with RedisAI

Play
2019-08-12T19:00:00Z #ai 🎧 8,192

Redis is a an open source, in-memory data structure store, widely used as a database, cache and message broker. It now also support tensor data types and deep learning models via the RedisAI module. Why did they build this module? Who is or should be using it? We discuss this and much more with Pieter Cailliau.

Practical AI Practical AI #51

AI code that facilitates good science

Play
2019-07-19T18:30:00Z #ai 🎧 7,514

We’re talking with Joel Grus, author of Data Science from Scratch, 2nd Edition, senior research engineer at the Allen Institute for AI (AI2), and maintainer of AllenNLP. We discussed Joel’s book, which has become a personal favorite of the hosts, and why he decided to approach data science and AI “from scratch.” Joel also gives us a glimpse into AI2, an introduction to AllenNLP, and some tips for writing good research code. This episode is packed full of reproducible AI goodness!

Practical AI Practical AI #50

Celebrating episode 50 and the neural net!

Play
2019-07-03T11:00:00Z #ai +3 🎧 7,055

Woo hoo! As we celebrate reaching episode 50, we come full circle to discuss the basics of neural networks. If you are just jumping into AI, then this is a great primer discussion with which to take that leap.

Our commitment to making artificial intelligence practical, productive, and accessible to everyone has never been stronger, so we invite you to join us for the next 50 episodes!

Player art
  0:00 / 0:00