Machine Learning Icon

Machine Learning

Machine Learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
125 Stories
All Topics

Practical AI Practical AI #109

When data leakage turns into a flood of trouble

Rajiv Shah teaches Daniel and Chris about data leakage, and its major impact upon machine learning models. It’s the kind of topic that we don’t often think about, but which can ruin our results. Raj discusses how to use activation maps and image embedding to find leakage, so that leaking information in our test set does not find its way into our training set.

Practical AI Practical AI #108

Productionizing AI at LinkedIn

Suju Rajan from LinkedIn joined us to talk about how they are operationalizing state-of-the-art AI at LinkedIn. She sheds light on how AI can and is being used in recruiting, and she weaves in some great explanations of how graph-structured data, personalization, and representation learning can be applied to LinkedIn’s candidate search problem. Suju is passionate about helping people deal with machine learning technical debt, and that gives this episode a good dose of practicality.

Practical AI Practical AI #106

Learning about (Deep) Learning

In anticipation of the upcoming NVIDIA GPU Technology Conference (GTC), Will Ramey joins Daniel and Chris to talk about education for artificial intelligence practitioners, and specifically the role that the NVIDIA Deep Learning Institute plays in the industry. Will’s insights from long experience are shaping how we all stay on top of AI, so don’t miss this ‘must learn’ episode.

Practical AI Practical AI #105

When AI goes wrong

So, you trained a great AI model and deployed it in your app? It’s smooth sailing from there right? Well, not in most people’s experience. Sometimes things goes wrong, and you need to know how to respond to a real life AI incident. In this episode, Andrew and Patrick from BNH.ai join us to discuss an AI incident response plan along with some general discussion of debugging models, discrimination, privacy, and security.

Practical AI Practical AI #104

Speech tech and Common Voice at Mozilla

Many people are excited about creating usable speech technology. However, most of the audio data used by large companies isn’t available to the majority of people, and that data is often biased in terms of language, accent, and gender. Jenny, Josh, and Remy from Mozilla join us to discuss how Mozilla is building an open-source voice database that anyone can use to make innovative apps for devices and the web (Common Voice). They also discuss efforts through Mozilla fellowship program to develop speech tech for African languages and understand bias in data sets.

Practical AI Practical AI #103

Getting Waymo into autonomous driving

Waymo’s mission is to make it safe and easy for people and things to get where they’re going.
After describing the state of the industry, Drago Anguelov - Principal Scientist and Head of Research at Waymo - takes us on a deep dive into the world of AI-powered autonomous driving. Starting with Waymo’s approach to autonomous driving, Drago then delights Daniel and Chris with a tour of the algorithmic tools in the autonomy toolbox.

Practical AI Practical AI #102

Hidden Door and so much more

Hilary Mason is building a new way for kids and families to create stories with AI. It’s called Hidden Door, and in her first interview since founding it, Hilary reveals to Chris and Daniel what the experience will be like for kids. It’s the first Practical AI episode in which some of the questions came from Chris’s 8yo daughter Athena.

Hilary also shares her insights into various topics, like how to build data science communities during the COVID-19 Pandemic, reasons why data science goes wrong, and how to build great data-based products. Don’t miss this episode packed with hard-won wisdom!

The Changelog The Changelog #409

Celebrating Practical AI turning 100!! 🎉

We’re so excited to see Chris and Daniel take this show to 100 episodes, and that’s exactly why we’re rebroadcasting Practical AI #100 here on The Changelog. They’ve had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and I joined the first episode to help kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)

Practical AI Practical AI #100

Practical AI turns 100!!! 🎉

We made it to 100 episodes of Practical AI! It has been a privilege to have had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and Adam from The Changelog helped us kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)

Practical AI Practical AI #97

MLOps and tracking experiments with Allegro AI

DevOps for deep learning is well… different. You need to track both data and code, and you need to run multiple different versions of your code for long periods of time on accelerated hardware. Allegro AI is helping data scientists manage these workflows with their open source MLOps solution called Trains. Nir Bar-Lev, Allegro’s CEO, joins us to discuss their approach to MLOps and how to make deep learning development more robust.

Practical AI Practical AI #96

Practical AI Ethics

The multidisciplinary field of AI Ethics is brand new, and is currently being pioneered by a relatively small number of leading AI organizations and academic institutions around the world. AI Ethics focuses on ensuring that unexpected outcomes from AI technology implementations occur as rarely as possible. Daniel and Chris discuss strategies for how to arrive at AI ethical principles suitable for your own organization, and what is involved in implementing those strategies in the real world. Tune in for a practical AI primer on AI Ethics!

Practical AI Practical AI #94

Operationalizing ML/AI with MemSQL

A lot of effort is put into the training of AI models, but, for those of us that actually want to run AI models in production, performance and scaling quickly become blockers. Nikita from MemSQL joins us to talk about how people are integrating ML/AI inference at scale into existing SQL-based workflows. He also touches on how model features and raw files can be managed and integrated with distributed databases.

Practical AI Practical AI #93

Roles to play in the AI dev workflow

This full connected has it all: news, updates on AI/ML tooling, discussions about AI workflow, and learning resources. Chris and Daniel breakdown the various roles to be played in AI development including scoping out a solution, finding AI value, experimentation, and more technical engineering tasks. They also point out some good resources for exploring bias in your data/model and monitoring for fairness.

Practical AI Practical AI #92

The long road to AGI

Daniel and Chris go beyond the current state of the art in deep learning to explore the next evolutions in artificial intelligence. From Yoshua Bengio’s NeurIPS keynote, which urges us forward towards System 2 deep learning, to DARPA’s vision of a 3rd Wave of AI, Chris and Daniel investigate the incremental steps between today’s AI and possible future manifestations of artificial general intelligence (AGI).

Practical AI Practical AI #89

AI for Good: clean water access in Africa

Chandler McCann tells Daniel and Chris about how DataRobot engaged in a project to develop sustainable water solutions with the Global Water Challenge (GWC). They analyzed over 500,000 data points to predict future water point breaks. This enabled African governments to make data-driven decisions related to budgeting, preventative maintenance, and policy in order to promote and protect people’s access to safe water for drinking and washing. From this effort sprang DataRobot’s larger AI for Good initiative.

Practical AI Practical AI #87

Reinforcement learning for chip design

Daniel and Chris have a fascinating discussion with Anna Goldie and Azalia Mirhoseini from Google Brain about the use of reinforcement learning for chip floor planning - or placement - in which many new designs are generated, and then evaluated, to find an optimal component layout. Anna and Azalia also describe the use of graph convolutional neural networks in their approach.

Practical AI Practical AI #86

Exploring the COVID-19 Open Research Dataset

In the midst of the COVID-19 pandemic, Daniel and Chris have a timely conversation with Lucy Lu Wang of the Allen Institute for Artificial Intelligence about COVID-19 Open Research Dataset (CORD-19). She relates how CORD-19 was created and organized, and how researchers around the world are currently using the data to answer important COVID-19 questions that will help the world through this ongoing crisis.

Practical AI Practical AI #85

Achieving provably beneficial, human-compatible AI

AI legend Stuart Russell, the Berkeley professor who leads the Center for Human-Compatible AI, joins Chris to share his insights into the future of artificial intelligence. Stuart is the author of Human Compatible, and the upcoming 4th edition of his perennial classic Artificial Intelligence: A Modern Approach, which is widely regarded as the standard text on AI. After exposing the shortcomings inherent in deep learning, Stuart goes on to propose a new practitioner approach to creating AI that avoids harmful unintended consequences, and offers a path forward towards a future in which humans can safely rely of provably beneficial AI.

Practical AI Practical AI #83

Mapping the intersection of AI and GIS

Daniel Wilson and Rob Fletcher of ESRI hang with Chris and Daniel to chat about how AI powered modern geographic information systems (GIS) and location intelligence. They illuminate the various models used for GIS, spatial analysis, remote sensing, real-time visualization, and 3D analytics. You don’t want to miss the part about their work for the DoD’s Joint AI Center in humanitarian assistance / disaster relief.

Practical AI Practical AI

Welcome to Practical AI

Practical AI is a weekly podcast that’s marking artificial intelligence practical, productive, and accessible to everyone. If world of AI affects your daily life, this show is for you.

From the practitioner wanting to keep up with the latest tools & trends…

(clip from episode #68)

To the AI curious trying to understand the concepts at play and their implications on our lives…

(clip from episode #39)

Expert hosts Chris Benson and Daniel Whitenack are here to keep you fully-connected with the world of machine learning and data science.

Please listen to a recent episode that interests you and subscribe today. We’d love to have you as a listener!

Practical AI Practical AI #82

Speech recognition to say it just right

Catherine Breslin of Cobalt joins Daniel and Chris to do a deep dive on speech recognition. She also discusses how the technology is integrated into virtual assistants (like Alexa) and is used in other non-assistant contexts (like transcription and captioning). Along the way, she teaches us how to assemble a lexicon, acoustic model, and language model to bring speech recognition to life.

0:00 / 0:00