Machine Learning Icon

Machine Learning

Machine Learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
167 Stories
All Topics

Practical AI Practical AI #138

Multi-GPU training is hard (without PyTorch Lightning)

William Falcon wants AI practitioners to spend more time on model development, and less time on engineering. PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research that lets you train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! In this episode, we dig deep into Lightning, how it works, and what it is enabling. William also discusses the Grid AI platform (built on top of PyTorch Lightning). This platform lets you seamlessly train 100s of Machine Learning models on the cloud from your laptop.

Practical AI Practical AI #137

Learning to learn deep learning 📖

Chris and Daniel sit down to chat about some exciting new AI developments including wav2vec-u (an unsupervised speech recognition model) and meta-learning (a new book about “How To Learn Deep Learning And Thrive In The Digital World”). Along the way they discuss engineering skills for AI developers and strategies for launching AI initiatives in established companies.

Practical AI Practical AI #135

Elixir meets machine learning

Today we’re sharing a special crossover episode from The Changelog podcast here on Practical AI. Recently, Daniel Whitenack joined Jerod Santo to talk with José Valim, Elixir creator, about Numerical Elixir. This is José’s newest project that’s bringing Elixir into the world of machine learning. They discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook that’s built on Phoenix LiveView.

Practical AI Practical AI #133

25 years of speech technology innovation

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

The Changelog The Changelog #439

Elixir meets machine learning

This week Elixir creator José Valim joins Jerod and Practical AI’s Daniel Whitenack to discuss Numerical Elixir, his new project that’s bringing Elixir into the world of machine learning. We discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook project that’s built on Phoenix LiveView.

Practical AI Practical AI #132

Generating "hunches" using smart home data 🏠

Smart home data is complicated. There are all kinds of devices, and they are in many different combinations, geographies, configurations, etc. This complicated data situation is further exacerbated during a pandemic when time series data seems to be filled with anomalies. Evan Welbourne joins us to discuss how Amazon is synthesizing this disparate data into functionality for the next generation of smart homes. He discusses the challenges of working with smart home technology, and he describes how they developed their latest feature called “hunches.”

Practical AI Practical AI #127

Women in Data Science (WiDS)

Chris has the privilege of talking with Stanford Professor Margot Gerritsen, who co-leads the Women in Data Science (WiDS) Worldwide Initiative. This is a conversation that everyone should listen to. Professor Gerritsen’s profound insights into how we can all help the women in our lives succeed - in data science and in life - is a ‘must listen’ episode for everyone, regardless of gender.

Practical AI Practical AI #122

The AI doc will see you now

Elad Walach of Aidoc joins Chris to talk about the use of AI for medical imaging interpretation. Starting with the world’s largest annotated training data set of medical images, Aidoc is the radiologist’s best friend, helping the doctor to interpret imagery faster, more accurately, and improving the imaging workflow along the way. Elad’s vision for the transformative future of AI in medicine clearly soothes Chris’s concern about managing his aging body in the years to come. ;-)

Practical AI Practical AI #119

Accelerating ML innovation at MLCommons

MLCommons launched in December 2020 as an open engineering consortium that seeks to accelerate machine learning innovation and broaden access to this critical technology for the public good. David Kanter, the executive director of MLCommons, joins us to discuss the launch and the ambitions of the organization.

In particular we discuss the three pillars of the organization: Benchmarks and Metrics (e.g. MLPerf), Datasets and Models (e.g. People’s Speech), and Best Practices (e.g. MLCube).

Practical AI Practical AI #118

The $1 trillion dollar ML model 💵

American Express is running what is perhaps the largest commercial ML model in the world; a model that automates over 8 billion decisions, ingests data from over $1T in transactions, and generates decisions in mere milliseconds or less globally. Madhurima Khandelwal, head of AMEX AI Labs, joins us for a fascinating discussion about scaling research and building robust and ethical AI-driven financial applications.

Practical AI Practical AI #115

From research to product at Azure AI

Bharat Sandhu, Director of Azure AI and Mixed Reality at Microsoft, joins Chris and Daniel to talk about how Microsoft is making AI accessible and productive for users, and how AI solutions can address real world challenges that customers face. He also shares Microsoft’s research-to-product process, along with the advances they have made in computer vision, image captioning, and how researchers were able to make AI that can describe images as well as people do.

Practical AI Practical AI #114

The world's largest open library dataset

Unsplash has released the world’s largest open library dataset, which includes 2M+ high-quality Unsplash photos, 5M keywords, and over 250M searches. They have big ideas about how the dataset might be used by ML/AI folks, and there have already been some interesting applications. In this episode, Luke and Tim discuss why they released this data and what it take to maintain a dataset of this size.

Practical AI Practical AI #113

A casual conversation concerning causal inference

Lucy D’Agostino McGowan, cohost of the Casual Inference Podcast and a professor at Wake Forest University, joins Daniel and Chris for a deep dive into causal inference. Referring to current events (e.g. misreporting of COVID-19 data in Georgia) as examples, they explore how we interact with, analyze, trust, and interpret data - addressing underlying assumptions, counterfactual frameworks, and unmeasured confounders (Chris’s next Halloween costume).

0:00 / 0:00