Practical AI

Practical AI Artwork

Making artificial intelligence practical, productive, and accessible to everyone

Practical AI Practical AI #119

Accelerating ML innovation at MLCommons

MLCommons launched in December 2020 as an open engineering consortium that seeks to accelerate machine learning innovation and broaden access to this critical technology for the public good. David Kanter, the executive director of MLCommons, joins us to discuss the launch and the ambitions of the organization.

In particular we discuss the three pillars of the organization: Benchmarks and Metrics (e.g. MLPerf), Datasets and Models (e.g. People’s Speech), and Best Practices (e.g. MLCube).

Practical AI Practical AI #118

The $1 trillion dollar ML model 💵

American Express is running what is perhaps the largest commercial ML model in the world; a model that automates over 8 billion decisions, ingests data from over $1T in transactions, and generates decisions in mere milliseconds or less globally. Madhurima Khandelwal, head of AMEX AI Labs, joins us for a fascinating discussion about scaling research and building robust and ethical AI-driven financial applications.

Practical AI Practical AI #116

Engaging with governments on AI for good

At this year’s Government & Public Sector R Conference (or R|Gov) our very own Daniel Whitenack moderated a panel on how AI practitioners can engage with governments on AI for good projects. That discussion is being republished in this episode for all our listeners to enjoy!

The panelists were Danya Murali from Arcadia Power and Emily Martinez from the NYC Department of Health and Mental Hygiene. Danya and Emily gave some great perspectives on sources of government data, ethical uses of data, and privacy.

Practical AI Practical AI #115

From research to product at Azure AI

Bharat Sandhu, Director of Azure AI and Mixed Reality at Microsoft, joins Chris and Daniel to talk about how Microsoft is making AI accessible and productive for users, and how AI solutions can address real world challenges that customers face. He also shares Microsoft’s research-to-product process, along with the advances they have made in computer vision, image captioning, and how researchers were able to make AI that can describe images as well as people do.

Practical AI Practical AI #114

The world's largest open library dataset

Unsplash has released the world’s largest open library dataset, which includes 2M+ high-quality Unsplash photos, 5M keywords, and over 250M searches. They have big ideas about how the dataset might be used by ML/AI folks, and there have already been some interesting applications. In this episode, Luke and Tim discuss why they released this data and what it take to maintain a dataset of this size.

Practical AI Practical AI #113

A casual conversation concerning causal inference

Lucy D’Agostino McGowan, cohost of the Casual Inference Podcast and a professor at Wake Forest University, joins Daniel and Chris for a deep dive into causal inference. Referring to current events (e.g. misreporting of COVID-19 data in Georgia) as examples, they explore how we interact with, analyze, trust, and interpret data - addressing underlying assumptions, counterfactual frameworks, and unmeasured confounders (Chris’s next Halloween costume).

Practical AI Practical AI #112

Building a deep learning workstation

What’s it like to try and build your own deep learning workstation? Is it worth it in terms of money, effort, and maintenance? Then once built, what’s the best way to utilize it? Chris and Daniel dig into questions today as they talk about Daniel’s recent workstation build. He built a workstation for his NLP and Speech work with two GPUs, and it has been serving him well (minus a few things he would change if he did it again).

Practical AI Practical AI #109

When data leakage turns into a flood of trouble

Rajiv Shah teaches Daniel and Chris about data leakage, and its major impact upon machine learning models. It’s the kind of topic that we don’t often think about, but which can ruin our results. Raj discusses how to use activation maps and image embedding to find leakage, so that leaking information in our test set does not find its way into our training set.

Practical AI Practical AI #108

Productionizing AI at LinkedIn

Suju Rajan from LinkedIn joined us to talk about how they are operationalizing state-of-the-art AI at LinkedIn. She sheds light on how AI can and is being used in recruiting, and she weaves in some great explanations of how graph-structured data, personalization, and representation learning can be applied to LinkedIn’s candidate search problem. Suju is passionate about helping people deal with machine learning technical debt, and that gives this episode a good dose of practicality.

Practical AI Practical AI #106

Learning about (Deep) Learning

In anticipation of the upcoming NVIDIA GPU Technology Conference (GTC), Will Ramey joins Daniel and Chris to talk about education for artificial intelligence practitioners, and specifically the role that the NVIDIA Deep Learning Institute plays in the industry. Will’s insights from long experience are shaping how we all stay on top of AI, so don’t miss this ‘must learn’ episode.

Practical AI Practical AI #105

When AI goes wrong

So, you trained a great AI model and deployed it in your app? It’s smooth sailing from there right? Well, not in most people’s experience. Sometimes things goes wrong, and you need to know how to respond to a real life AI incident. In this episode, Andrew and Patrick from BNH.ai join us to discuss an AI incident response plan along with some general discussion of debugging models, discrimination, privacy, and security.

Practical AI Practical AI #104

Speech tech and Common Voice at Mozilla

Many people are excited about creating usable speech technology. However, most of the audio data used by large companies isn’t available to the majority of people, and that data is often biased in terms of language, accent, and gender. Jenny, Josh, and Remy from Mozilla join us to discuss how Mozilla is building an open-source voice database that anyone can use to make innovative apps for devices and the web (Common Voice). They also discuss efforts through Mozilla fellowship program to develop speech tech for African languages and understand bias in data sets.

Practical AI Practical AI #103

Getting Waymo into autonomous driving

Waymo’s mission is to make it safe and easy for people and things to get where they’re going.
After describing the state of the industry, Drago Anguelov - Principal Scientist and Head of Research at Waymo - takes us on a deep dive into the world of AI-powered autonomous driving. Starting with Waymo’s approach to autonomous driving, Drago then delights Daniel and Chris with a tour of the algorithmic tools in the autonomy toolbox.

Practical AI Practical AI #102

Hidden Door and so much more

Hilary Mason is building a new way for kids and families to create stories with AI. It’s called Hidden Door, and in her first interview since founding it, Hilary reveals to Chris and Daniel what the experience will be like for kids. It’s the first Practical AI episode in which some of the questions came from Chris’s 8yo daughter Athena.

Hilary also shares her insights into various topics, like how to build data science communities during the COVID-19 Pandemic, reasons why data science goes wrong, and how to build great data-based products. Don’t miss this episode packed with hard-won wisdom!

Practical AI Practical AI #101

Building the world's most popular data science platform

Everyone working in data science and AI knows about Anaconda and has probably “conda” installed something. But how did Anaconda get started and what are they working on now? Peter Wang, CEO of Anaconda and creator of PyData and popular packages like Bokeh and DataShader, joins us to discuss that and much more. Peter gives some great insights on the Python AI ecosystem and very practical advice for scaling up your data science operation.

Practical AI Practical AI #100

Practical AI turns 100!!! 🎉

We made it to 100 episodes of Practical AI! It has been a privilege to have had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and Adam from The Changelog helped us kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)

Practical AI Practical AI #98

🤗 All things transformers with Hugging Face

Sash Rush, of Cornell Tech and Hugging Face, catches us up on all the things happening with Hugging Face and transformers. Last time we had Clem from Hugging Face on the show (episode 35), their transformers library wasn’t even a thing yet. Oh how things have changed! This time Sasha tells us all about Hugging Face’s open source NLP work, gives us an intro to the key components of transformers, and shares his perspective on the future of AI research conferences.

Practical AI Practical AI #97

MLOps and tracking experiments with Allegro AI

DevOps for deep learning is well… different. You need to track both data and code, and you need to run multiple different versions of your code for long periods of time on accelerated hardware. Allegro AI is helping data scientists manage these workflows with their open source MLOps solution called Trains. Nir Bar-Lev, Allegro’s CEO, joins us to discuss their approach to MLOps and how to make deep learning development more robust.

Practical AI Practical AI #96

Practical AI Ethics

The multidisciplinary field of AI Ethics is brand new, and is currently being pioneered by a relatively small number of leading AI organizations and academic institutions around the world. AI Ethics focuses on ensuring that unexpected outcomes from AI technology implementations occur as rarely as possible. Daniel and Chris discuss strategies for how to arrive at AI ethical principles suitable for your own organization, and what is involved in implementing those strategies in the real world. Tune in for a practical AI primer on AI Ethics!

Practical AI Practical AI #94

Operationalizing ML/AI with MemSQL

A lot of effort is put into the training of AI models, but, for those of us that actually want to run AI models in production, performance and scaling quickly become blockers. Nikita from MemSQL joins us to talk about how people are integrating ML/AI inference at scale into existing SQL-based workflows. He also touches on how model features and raw files can be managed and integrated with distributed databases.

Practical AI Practical AI #93

Roles to play in the AI dev workflow

This full connected has it all: news, updates on AI/ML tooling, discussions about AI workflow, and learning resources. Chris and Daniel breakdown the various roles to be played in AI development including scoping out a solution, finding AI value, experimentation, and more technical engineering tasks. They also point out some good resources for exploring bias in your data/model and monitoring for fairness.

Practical AI Practical AI #92

The long road to AGI

Daniel and Chris go beyond the current state of the art in deep learning to explore the next evolutions in artificial intelligence. From Yoshua Bengio’s NeurIPS keynote, which urges us forward towards System 2 deep learning, to DARPA’s vision of a 3rd Wave of AI, Chris and Daniel investigate the incremental steps between today’s AI and possible future manifestations of artificial general intelligence (AGI).

0:00 / 0:00