This is the first episode in a special series we are calling the “Spotlight on AI in Africa”. To kick things off, Joyce and Mutembesa from Makerere University’s AI Lab join us to talk about their amazing work in computer vision, natural language processing, and data collection. Their lab seeks out problems that matter in African communities, pairs those problems with appropriate data/tools, and works with the end users to ensure that solutions create real value.
Mutembesa: Thank you for having me over, Mutembesa here. So at the Artificial Intelligence Research Lab here in Makerere University this is an effort that – it’s pretty much a group actually, once you get to look a bit closely, because there’s members that have been through the pipeline, through the system, at the Makerere University here in Kampala; it started as a group of people doing their doctorates in the 2009-2010, about that period, and they were coming back from exchange programs that were with other universities abroad… So they returned to be able to use these computation techniques that they’ve learned to solve issues that were pertinent to the local community, largely Africa.
Some of the work that is majorly in there - there’s a lot of work in agriculture, because the focus had to be on issues that were of interest to the people, or of interest to the communities… So agriculture, health, looking at infrastructure, languages now… So some of these - for each maybe I’ll just highlight some of the works that have been done in there.
For agriculture, the lab or the group has had a strong contribution to data representation of, say, crop diseases and pests on a large scale, being able to crowdsource that from communities or farmers with mobile phones.
There’s also been work on automating mundane tasks that are being carried out by experts… So sort of using a lot of machine learning and AI to be able to do, say, disease recognition and identification, and classifying those diseases.
[08:12] There’s been some work that has been around being able to diagnose the plants non-invasively, using spectrometry light to be able to identify or classify the kinds of diseases that it matches with for some of the key crops. And when I say crops, the early efforts of the lab have been very focused on food security crops. Since about 2010, all the way down to about 2018, the lab has been focused on food security crops, but now we see a greater divergence to other important income developing crops, or crops that improve the nutrition… There’s been work on being able to use radio, because radio is still the biggest social media here in the global South, especially here in Africa… So to be able to use radio, which Joyce was lead. To be able to use radio, to map where crises are for different crops, or for different diseases, or for different pest infestations, or whatever topics that are around diseases.
And that’s just the highlight of the work that has been done. This is in monitoring and evaluation for crops. We’ve also had work around being able to use AI to make accessible credit scoring for historically unbanked small holder farmers, amongst many other things. So this is just the tip of the iceberg of some of the works that have been done in agriculture.
When we move over to health, some of the prominent work that we see has been around being able to produce artifacts that can then be attached to microscopes in healthcare centers. Why is this important? It’s because largely we have a ratio of 100-200 patients for every clinician or every lab tech… Whereas the gold standard is like 1-20. So you find that there is a need for being able to reduce the load on clinicians or on lab technicians.
Also, beyond that, once you are able to get that data, being able to use machine learning to identify which parasites on some of these microscopes you’re looking at, and then to be able to do a count. This would reduce the load and the 30 minutes procedures to about a two to five minute procedure. So it means that clinicians or the lab techs can work on more people effectively throughout the day within a reduced cost. We’ve done some work where we’re able to use machine learning to identify and do the counts within an ethical and responsible kind of way.
Also in health we have work that was previously done around using mobile/cell phone tower data to track the mobility of people. This data was from a prominent telecom; again, ethically anonymized to be able to just provide a network of how people move, and then be able to use that as a feature for predicting the spatio-temporal patterns of diseases where the contributor is – you know, somebody gets infected here, travels to another place, gets beaten by another vector. So some of the diseases like malaria, where mobility is a contributing factor.
This is just an overview of some of the work in health. There’s definitely much more in infrastructure… Some of the early work that has come out of the lab has been being able to identify motorcycles, trucks within traffic using very local [unintelligible 00:12:03.17] sized devices to be able to identify and know “Okay, this road is probably jammed” and predict where traffic scenarios are going to be. Why is this important? It’s because there’s very limited resources around city management or township management here.
[12:23] So those are some of the early works. Of course, recently there’s been work that is using machine learning on Covid response, Covid data and response. That was started at the height of the pandemic last year.
There’s also been work around being able to connect farmers to markets using their small batten phones - not too sure if you know them - where a farmer and a willing buyer can send their requests to a central place and there a machine learning matching algorithm could be able to match who is the most potential buyer, and the most potential seller, based on the proximity of the price, geographical distance, to multiple other features. Of course, this gets better and better as you have more data coming in.
Also, maybe just one of the last that I would like to highlight is we have a project that is looking at the ethics, the fairness, accountability and transparency of some of these algorithms that we build… Because our policy or our mandate is so paper thin that even doing basic research within the global South you end up impacting lives of people. So our permeation of work is very paper-thin that we always end up working with communities directly… Which is one of the three ethos of the lab that I will talk about just after this.
So one of the things that we also have to look at is what are the ethical implications of working within these communities, sort of measuring our impact and what are the kinds of fairness questions that we have to ask.
Wrapping that up – there’s a couple of other projects, but wrapping that up, this is based in a three-step ethos for the lab, where the first is to be able to find a good local problem; that is the first ethos that we follow. That means a problem that matters, a problem that has democratic voice as being important. Then secondly, being able to match that problem to a good computational toolkit… Or once we have a problem, we try from a research point of view to see, “Does this match some technological or computational solution that is accessible to us?” Within AI, or within machine learning, or within the computing.
Then the last is to be able to tie the challenge, the technique to a local beneficiary. So pretty much every project that you will hear out of the lab, every once single project has a local community attached to it, or has some beneficiaries. If it’s health, there is a hospital that we are attached to. If it’s languages, there’s local radio stations that we’re attached to. If it’s agriculture, we’re attached to the national crop service, we’re attached to local farmer communities. If it’s in roads, we are attached to the city management. If it’s air quality monitoring, which is one of the works that has also been done at the lab by a gentleman called professor engineer it’s also attached to city management, to schools who have vulnerable communities.